细胞色素P450酶与微生物药物创制
作者:
基金项目:

国家自然科学基金(31422002,31300075);山东省自然科学基金(JQ201407)


Cytochrome P450 enzymes and microbial drug development-A review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [89]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细胞色素P450酶广泛存在于动植物和微生物体内,具有底物结构多样性和催化反应类型多样性,在天然产物生物合成中扮演重要作用。P450酶可在温和条件下高选择性地催化结构复杂有机化合物中惰性C-H键的氧化反应,具备化学催化剂难以比拟的优势,因此在微生物制药领域具有广阔的应用空间。本文综述了参与天然产物生物合成的P450酶近年来的研究进展;P450酶的酶工程改造、生物转化实践及其在微生物药物创制方面的应用现状;探讨了P450酶的工业应用瓶颈及其解决途径;并对P450酶未来的应用前景进行了展望。

    Abstract:

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio-and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

    参考文献
    [1] Denisov IG, Makris TM, Sligar SG, Schlichting I. Structure and chemistry of cytochrome P450. Chemical Reviews, 2005, 105(6): 2253-2278.
    [2] Klingenberg M. Pigments of rat liver microsomes. Archives of Biochemistry and Biophysics, 1958, 75(2): 376-386.
    [3] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822): 860-921.
    [4] Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA. The sequence of the human genome. Science, 2001, 291(5507): 1304-1351.
    [5] Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3 (2). Journal of Biological Chemistry, 2002, 277(27): 24000-24005.
    [6] Kelly DE, Kraševec N, Mullins J, Nelson DR. The CYPome (cytochrome P450 complement) of Aspergillus nidulans. Fungal Genetics and Biology, 2009, 46(1): S53-S61.
    [7] Guengerich FP, Munro AW. Unusual cytochrome P450 enzymes and reactions. Journal of Biological Chemistry, 2013, 288(24): 17065-17073.
    [8] Poulos TL, Finzel B, Gunsalus I, Wagner GC, Kraut J. The 2.6-A crystal structure of Pseudomonas putida cytochrome P450. Journal of Biological Chemistry, 1985, 260(30): 16122-16130.
    [9] Poulos TL. Cytochrome P450. Current Opinion in Structural Biology, 1995, 5(6): 767-774.
    [10] Halpert JR, Domanski TL, Adali O, Biagini CP, Cosme J, Dierks EA, Johnson EF, Jones JP, de Montellano PO, Philpot RM. Structure-function of cytochromes P450 and flavin-containing monooxygenases implications for drug metabolism. Drug Metabolism and Disposition, 1998, 26(12): 1223-1231.
    [11] Bernhardt R. Optimized chimeragenesis: creating diverse P450 functions. Chemistry & Biology, 2004, 11(3): 287-288.
    [12] Ortiz de Montellano PR. Cytochrome P450: structure, mechanism, and biochemistry. 3rd Ed. New York: Montellano, P. R. Ed. Kluwer Academic / Plenum Publishers, 2005.87-114.
    [13] Guengerich FP. Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chemical Research in Toxicology, 2001, 14(6): 611-650.
    [14] Nebert DW, Adesnik M, Coon MJ, Estabrook RW, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Kemper B, Levin W. The P450 gene superfamily: recommended nomenclature. DNA, 1987, 6(1): 1-11.
    [15] Ruettinger RT, Fulco A. Epoxidation of unsaturated fatty acids by a soluble cytochrome P450-dependent system from Bacillus megaterium. Journal of Biological Chemistry, 1981, 256(11): 5728-5734.
    [16] Li S, Podust LM, Sherman DH. Engineering and analysis of a self-sufficient biosynthetic cytochrome P450 PikC fused to the RhFRED reductase domain. Journal of the American Chemical Society, 2007, 129(43): 12940-12941.
    [17] Roberts GA, Grogan G, Greter A, Flitsch SL, Turner NJ. Identification of a new class of cytochrome P450 from a Rhodococcus sp.. Journal of Bacteriology, 2002, 184(14): 3898-3908.
    [18] Daiber A, Shoun H, Ullrich V. Nitric oxide reductase (P450 nor) from Fusarium oxysporum. Journal of Inorganic Biochemistry, 2005, 99(1): 185-193.
    [19] Bernhardt R, Urlacher VB. Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations. Applied Microbiology and Biotechnology, 2014, 98(14): 6185-6203.
    [20] Huang W, Wang JB, Tang GL. Synthetic biology toward medicinal natural products. Chinese Bulletin of Life Sciences, 2011, 23(9): 891-899. (In Chinese)黄伟, 王健博, 唐功利. 天然产物类药物的合成生物学研究. 生命科学, 2011, 23(9): 891-899.
    [21] Stassi D, Donadio S, Staver MJ, Katz L. Identification of a Saccharopolyspora erythraea gene required for the final hydroxylation step in erythromycin biosynthesis. Journal of Bacteriology, 1993, 175(1): 182-189.
    [22] Weber J, Leung J, Swanson S, Idler K, McAlpine J. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea. Science, 1991, 252(5002): 114-117.
    [23] Lee SK, Park JW, Kim JW, Jung WS, Park SR, Choi CY, Kim ES, Kim BS, Ahn JS, Sherman DH. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae. Journal of Natural Products, 2006, 69(5): 847-849.
    [24] Xue Y, Wilson D, Zhao L, Liu HW, Sherman DH. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae. Chemistry & Biology, 1998, 5(11): 661-667.
    [25] Rodriguez AM, Olano C, Méndez C, Hutchinson CR, Salas J. A cytochrome P450-like gene possibly involved in oleandomycin biosynthesis by Streptomyces antibioticus. FEMS Microbiology Letters, 1995, 127(1-2): 117-120.
    [26] Ogura H, Nishida CR, Hoch UR, Perera R, Dawson JH, Ortiz de Montellano PR. EpoK, a cytochrome P450 involved in biosynthesis of the anticancer agents epothilones A and B. Substrate-mediated rescue of a P450 enzyme. Biochemistry, 2004, 43(46): 14712-14721.
    [27] Cacho RA, Chooi YH, Zhou H, Tang Y. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chemical Biology, 2013, 8(10): 2322-2330.
    [28] Chooi YH, Hong YJ, Cacho RA, Tantillo DJ, Tang Y. A cytochrome P450 serves as an unexpected terpene cyclase during fungal meroterpenoid biosynthesis. Journal of the American Chemical Society, 2013, 135(45): 16805-16808.
    [29] Anzai Y, Li S, Chaulagain MR, Kinoshita K, Kato F, Montgomery J, Sherman DH. Functional analysis of MycCI and MycG, cytochrome P450 enzymes involved in biosynthesis of mycinamicin macrolide antibiotics. Chemistry & Biology, 2008, 15(9): 950-959.
    [30] Carlson JC, Fortman J, Anzai Y, Li S, Burr DA, Sherman DH. Identification of the tirandamycin biosynthetic gene cluster from Streptomyces sp. 307-9. Chembiochem : a European Journal of Chemical Biology, 2010, 11(4): 564-572.
    [31] Carlson JC, Li S, Burr DA, Sherman DH. Isolation and characterization of tirandamycins from a marine-derived Streptomyces sp. Journal of Natural Products, 2009, 72(11): 2076-2079.
    [32] Matsuda Y, Iwabuchi T, Wakimoto T, Awakawa T, Abe I. Uncovering the unusual D-ring construction in terretonin biosynthesis by collaboration of a multifunctional cytochrome P450 and a unique isomerase. Journal of the American Chemical Society, 2015, 137(9): 3393-3401.
    [33] Barriuso J, Nguyen DT, Li JWH, Roberts JN, MacNevin G, Chaytor JL, Marcus SL, Vederas JC, Ro DK. Double oxidation of the cyclic nonaketide dihydromonacolin L to monacolin J by a single cytochrome P450 monooxygenase, LovA. Journal of the American Chemical Society, 2011, 133(21): 8078-8081.
    [34] Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.
    [35] Davidson SE, Reid JB, Helliwell CA. Cytochromes P450 in gibberellin biosynthesis. Phytochemistry Reviews, 2006, 5(2-3): 405-419.
    [36] Gesell A, Rolf M, Ziegler J, Chávez MLD, Huang FC, Kutchan TM. CYP719B1 is salutaridine synthase, the CC phenol-coupling enzyme of morphine biosynthesis in opium poppy. Journal of Biological Chemistry, 2009, 284(36): 24432-24442.
    [37] Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science, 2015, 349(6245): 309-312.
    [38] Warman A, Roitel O, Neeli R, Girvan H, Seward H, Murray S, McLean K, Joyce M, Toogood H, Holt R. Flavocytochrome P450 BM3: an update on structure and mechanism of a biotechnologically important enzyme. Biochemical Society Transactions, 2005, 33(4): 747-753.
    [39] Otey CR, Bandara G, Lalonde J, Takahashi K, Arnold FH. Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450. Biotechnology and Bioengineering, 2006, 93(3): 494-499.
    [40] Sawayama AM, Chen MM, Kulanthaivel P, Kuo MS, Hemmerle H, Arnold FH. A panel of cytochrome P450 BM3 variants to produce drug metabolites and diversify lead compounds. Chemistry-A European Journal, 2009, 15(43): 11723-11729.
    [41] van Vugt-Lussenburg BM, Damsten MC, Maasdijk DM, Vermeulen NP, Commandeur JN. Heterotropic and homotropic cooperativity by a drug-metabolising mutant of cytochrome P450 BM3. Biochemical and Biophysical Research Communications, 2006, 346(3): 810-818.
    [42] Kim DH, Ahn T, Jung HC, Pan JG, Yun CH. Generation of the human metabolite piceatannol from the anticancer-preventive agent resveratrol by bacterial cytochrome P450 BM3. Drug Metabolism and Disposition, 2009, 37(5): 932-936.
    [43] Sherman DH, Li S, Yermalitskaya LV, Kim Y, Smith JA, Waterman MR, Podust LM. The structural basis for substrate anchoring, active site selectivity and product formation by P450 PikC from Streptomyces venezuelae. Journal of Biological Chemistry, 2006, 281(36): 26289-26297.
    [44] Lamb DC, Waterman MR, Zhao B. Streptomyces cytochromes P450: applications in drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 2013, 9(10): 1279-1294.
    [45] Sakaki T. Practical application of cytochrome P450. Biological and Pharmaceutical Bulletin, 2012, 35(6): 844-849.
    [46] Ma L, Du L, Chen H, Sun Y, Huang S, Zheng X, Kim E-S, Li S. Reconstitution of the in vitro activity of the cyclosporine-specific P450 hydroxylase from Sebekia benihana and development of a heterologous whole-cell biotransformation system. Applied and Environmental Microbiology, 2015, 81(18): 6268-6275.
    [47] Paddon CJ, Westfall P, Pitera D, Benjamin K, Fisher K, McPhee D, Leavell M, Tai A, Main A, Eng D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-532.
    [48] Hosobuchi M, Kurosawa K, Yoshikawa H. Application of computer to monitoring and control of fermentation process: microbial conversion of ML-236B Na to pravastatin. Biotechnology and Bioengineering, 1993, 42(7): 815-820.
    [49] Serizawa N, Matsuoka T. A two component-type cytochrome P450 monooxygenase system in a prokaryote that catalyzes hydroxylation of ML-236B to pravastatin, a tissue-selective inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism, 1991, 1084(1): 35-40.
    [50] Chen CH, Hu HY, Cho YC, Hsu WH. Screening of compactin-resistant microorganisms capable of converting compactin to pravastatin. Current microbiology, 2006, 53(2): 108-112.
    [51] Ba L, Li P, Zhang H, Duan Y, Lin Z. Semi-rational engineering of cytochrome P450sca-2 in a hybrid system for enhanced catalytic activity: Insights into the important role of electron transfer. Biotechnology and Bioengineering, 2013, 110(11): 2815-2825.
    [52] Kawauchi H, Sasaki J, Adachi T, Hanada K, Beppu T, Horinouchi S. Cloning and nucleotide sequence of a bacterial cytochrome P-450 VD25 gene encoding vitamin D-3,25-hydroxylase. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1994, 1219(1): 179-183.
    [53] Sasaki J, Miyazaki A, Saito M, Adachi T, Mizoue K, Hanada K, Omura S. Transformation of vitamin D3 to 1α, 25-dihydroxyvitamin D3 via 25-hydroxyvitamin D3 using Amycolata sp. strains. Applied Microbiology and Biotechnology, 1992, 38(2): 152-157.
    [54] Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K. Conversion of vitamin D 3 to 1α, 25-dihydroxyvitamin D 3 by Streptomyces griseolus cytochrome P450SU-1. Biochemical and Biophysical Research Communications, 2004, 320(1): 156-164.
    [55] Hayashi K, Sugimoto H, Shinkyo R, Yamada M, Ikeda S, Ikushiro S, Kamakura M, Shiro Y, Sakaki T. Structure-based design of a highly active vitamin D hydroxylase from Streptomyces griseolus CYP105A1. Biochemistry, 2008, 47(46): 11964-11972.
    [56] Hayashi K, Yasuda K, Sugimoto H, Ikushiro S, Kamakura M, Kittaka A, Horst RL, Chen TC, Ohta M, Shiro Y. Three-step hydroxylation of vitamin D3 by a genetically engineered CYP105A1. FEBS Journal, 2010, 277(19): 3999-4009.
    [57] Petzoldt K, Annen K, Laurent H, Wiechert R. Process for the preparation of 11 β-hydroxy steroids. U.S. Patent 4,353,985[P]. 1982-10-12.
    [58] Sakaki T, Akiyoshi-Shibata M, Yabusaki Y, Manabe K, Murakami H, Ohkawa H. Progesterone metabolism in recombinant yeast simultaneously expressing bovine cytochromes P450cl7 (CYP17A1) and P450c21 (CYP21B1) and yeast NADPH-P450 oxidoreductase. Pharmacogenetics and Genomics, 1991, 1(2): 86-93.
    [59] Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P. Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nature Biotechnology, 2003, 21(2): 143-149.
    [60] Hogg JA. Steroids, the steroid community and upjohn in perspective: a profile of innovation. Steroids, 1992, 57(12): 593-616.
    [61] Petrič Š, Hakki T, Bernhardt R, Žigon D, Črešnar B. Discovery of a steroid 11α-hydroxylase from Rhizopus oryzae and its biotechnological application. Journal of Biotechnology, 2010, 150(3): 428-437.
    [62] Nguyen KT, Virus C, Günnewich N, Hannemann F, Bernhardt R. Changing the regioselectivity of a P450 from C15 to C11 hydroxylation of progesterone. Chembiochem : a European Journal of Chemical Biology, 2012, 13(8): 1161-1166.
    [63] Parikh A, Josephy PD, Guengerich FP. Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry, 1999, 38(17): 5283-5289.
    [64] Wong TS, Arnold FH, Schwaneberg U. Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents. Biotechnology and Bioengineering, 2004, 85(3): 351-358.
    [65] Dietrich JA, Yoshikuni Y, Fisher KJ, Woolard FX, Ockey D, McPhee DJ, Renninger NS, Chang MC, Baker D, Keasling JD. A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3. ACS Chemical Biology, 2009, 4(4): 261-267.
    [66] Li S, Chaulagain MR, Knauff AR, Podust LM, Montgomery J, Sherman DH. Selective oxidation of carbolide C-H bonds by an engineered macrolide P450 mono-oxygenase. Proceedings of the National Academy of Sciences, 2009, 106(44): 18463-18468.
    [67] Narayan AR, Jiménez Osés G, Liu P, Negretti S, Zhao W, Gilbert MM, Ramabhadran RO, Yang YF, Furan LR, Li Z. Enzymatic hydroxylation of an unactivated methylene C-H bond guided by molecular dynamics simulations. Nature Chemistry, 2015, 7(8): 653-660.
    [68] Khatri Y, Hannemann F, Ewen KM, Pistorius D, Perlova O, Kagawa N, Brachmann AO, Müller R, Bernhardt R. The CYPome of Sorangium cellulosum So ce56 and identification of CYP109D1 as a new fatty acid hydroxylase. Chemistry & biology, 2010, 17(12): 1295-1305.
    [69] Hakki T, Zearo S, Drăgan CA, Bureik M, Bernhardt R. Coexpression of redox partners increases the hydrocortisone (cortisol) production efficiency in CYP11B1 expressing fission yeast Schizosaccharomyces pombe. Journal of Biotechnology, 2008, 133(3): 351-359.
    [70] Neunzig I, Widjaja M, Peters FT, Maurer HH, Hehn A, Bourgaud F, Bureik M. Coexpression of CPR from various origins enhances biotransformation activity of human CYPs in S. pombe. Applied Biochemistry and Biotechnology, 2013, 170(7): 1751-1766.
    [71] Uhlmann H, Kraft R, Bernhardt R. C-terminal region of adrenodoxin affects its structural integrity and determines differences in its electron transfer function to cytochrome P450. Journal of Biological Chemistry, 1994, 269(36): 22557-22564.
    [72] Shoji O, Fujishiro T, Nagano S, Tanaka S, Hirose T, Shiro Y, Watanabe Y. Understanding substrate misrecognition of hydrogen peroxide dependent cytochrome P450 from Bacillus subtilis. JBIC Journal of Biological Inorganic Chemistry, 2010, 15(8): 1331-1339.
    [73] Weis R, Winkler M, Schittmayer M, Kambourakis S, Vink M, Rozzell JD, Glieder A. A diversified library of bacterial and fungal bifunctional cytochrome P450 enzymes for drug metabolite synthesis. Advanced Synthesis & Catalysis, 2009, 351(13): 2140-2146.
    [74] Wong C, Drueckhammer DG, Sweers HM. Enzymatic vs. fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD (P) H for use in enzymatic synthesis. Journal of the American Chemical Society, 1985, 107(13): 4028-4031.
    [75] Johannes TW, Woodyer RD, Zhao H. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnology and Bioengineering, 2007, 96(1): 18-26.
    [76] Verho R, Londesborough J, Penttil? M, Richard P. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2003, 69(10): 5892-5897.
    [77] Seelbach K, Riebel B, Hummel W, Kula MR, Tishkov VI, Egorov AM, Wandrey C, Kragl U. A novel efficient regenerating method of NADPH using a new formate dehydrogenase. Tetrahedron Letters, 1996, 37(9): 1377-1380.
    [78] Michnick S, Roustan JL, Remize F, Barre P, Dequin S. Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast, 1997, 13(9): 783-793.
    [79] Kubo T, Peters MW, Meinhold P, Arnold FH. Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3. Chemistry-a European Journal, 2006, 12(4): 1216-1220.
    [80] Jensen K, Jensen PE, Møller BL. Light-driven cytochrome P450 hydroxylations. ACS Chemical Biology, 2011, 6(6): 533-539.
    [81] Goñi G, Zöllner A, Lisurek M, Velázquez-Campoy A, Pinto S, Gómez-Moreno C, Hannemann F, Bernhardt R, Medina M. Cyanobacterial electron carrier proteins as electron donors to CYP106A2 from Bacillus megaterium ATCC 13368. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2009, 1794(11): 1635-1642.
    [82] Park JH, Lee SH, Cha GS, Choi DS, Nam DH, Lee JH, Lee JK, Yun CH, Jeong KJ, Park CB. Cofactor-free light-driven whole-cell cytochrome P450 catalysis. Angewandte Chemie, 2015, 127(3): 983-987.
    [83] Schneider E, Clark DS. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors. Biosensors and Bioelectronics, 2013, 39(1): 1-13.
    [84] Kieboom J, Dennis JJ, de Bont JA, Zylstra GJ. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. Journal of Biological Chemistry, 1998, 273(1): 85-91.
    [85] Siriphongphaew A, Pisnupong P, Wongkongkatep J, Inprakhon P, Vangnai AS, Honda K, Ohtake H, Kato J, Ogawa J, Shimizu S. Development of a whole-cell biocatalyst co-expressing P450 monooxygenase and glucose dehydrogenase for synthesis of epoxyhexane. Applied Microbiology and Biotechnology, 2012, 95(2): 357-367.
    [86] Cornelissen S, Julsing MK, Volmer J, Riechert O, Schmid A, Bühler B. Whole-cell-based CYP153A6-catalyzed (S)-limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL. Biotechnology and Bioengineering, 2013, 110(5): 1282-1292.
    [87] Gavira C, Höfer R, Lesot A, Lambert F, Zucca J, Werck-Reichhart D. Challenges and pitfalls of P450-dependent (+)-valencene bioconversion by Saccharomyces cerevisiae. Metabolic Engineering, 2013, 18: 25-35.
    [88] Girhard M, Machida K, Itoh M, Schmid RD, Arisawa A, Urlacher VB. Regioselective biooxidation of (+)-valencene by recombinant E. coli expressing CYP109B1 from Bacillus subtilis in a two-liquid-phase system. Microbial Cell Factories, 2009, 8(36): 10.1186.
    [89] Caswell JM, O’Neill M, Taylor SJ, Moody TS. Engineering and application of P450 monooxygenases in pharmaceutical and metabolite synthesis. Current Opinion in Chemical Biology, 2013, 17(2): 271-275.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李众,张伟,李盛英. 细胞色素P450酶与微生物药物创制[J]. 微生物学报, 2016, 56(3): 496-515

复制
分享
文章指标
  • 点击次数:1646
  • 下载次数: 7070
  • HTML阅读次数: 720
  • 引用次数: 0
历史
  • 收稿日期:2015-09-11
  • 最后修改日期:2015-12-11
  • 在线发布日期: 2016-03-03
文章二维码