酵母人工合成细胞生产植物源天然产物
作者:
基金项目:

国家“863计划”(2012AA02A704);国家自然科学基金(81202864);中国科学院青年创新促进会(2015138)


Production of plant-derived natural products in yeast cells-A review
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [90]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    植物源天然产物在医疗保健领域有着广泛的应用。目前,生产植物源天然产物的主要方式为从原植物直接提取,但此法面临诸多问题。基于合成生物学的理念,创建酵母人工细胞工厂发酵生产植物源天然产物是一种新的资源获取途径。本文将从植物源天然产物在药物和营养领域的应用前景,发酵法生产青蒿酸的研发历程,部分萜类、生物碱和长链多不饱和脂肪酸的研究进展,以及该领域相关技术前沿4个方面介绍酵母人工合成细胞生产植物源天然产物的近况。

    Abstract:

    Plant-derived natural products (PNPs) have been widely used in pharmaceutical and nutritional fields. So far, the main method to produce PNPs is extracting them from their original plants, however, there remains lots of problems. With the concept of synthetic biology, construction of yeast cell factories for production of PNPs provides an alternative way. In this review, we will focus on PNPs' market and application, research progress for production of artemisinin, research progress for production of terpenes, alkaloids and polyunsaturated fatty acid (PUFAs) and recent technology development to give a brief introduction of construction of yeast cells for production of PNPs.

    参考文献
    [1] Marienhagen J, Bott M. Metabolic engineering of microorganisms for the synthes,is of plant natural products. Journal of Biotechnology, 2013, 163(2): 166-178.
    [2] Edge R, McGarvey DJ, Truscott TG. The carotenoids as anti-oxidants -a review. Journal of Photochemistry and Photobiology B: Biology, 1997, 41(3): 189-200.
    [3] Mukherjee AK, Basu S, Sarkar N, Ghosh AC. Advances in cancer therapy with plant based natural products. Current Medicinal Chemistry, 2001, 8(12): 1467-1486.
    [4] Seya M-J, Gelders SFAM, Achara OU, Milani B, Scholten WK. A first comparison between the consumption of and the need for opioid analgesics at country, regional, and global levels. Journal of Pain & Palliative Care Pharmacotherapy, 2011, 25(1): 6-18.
    [5] Qian KD, Kuo RY, Chen CH, Huang L, Morris-Natschke SL, Lee KH. Anti-AIDS agents 81. Design, synthesis and structure-activity relationship study of betulinic acid and moronic acid derivatives as potent HIV maturation inhibitors. Journal of Medicinal Chemistry, 2010, 53(8): 3133-3141.
    [6] Parness J, Horwitz SB. Taxol binds to polymerized tubulin in vitro. Journal of Cell Biology, 1981, 91(2): 479-487.
    [7] Jiang L. Anti-cancer analgetic preparation has lappaconitine and vincristine as main active anticancer components for resisting liver cancer, lung cancer, cancer of uterus and breast cancer and stopping the pain. China: CN1682733-A; CN1316972-C. 2005
    [8] Leonard E, Runguphan W, O'Connor S, Prather KJ. Opportunities in metabolic engineering to facilitate scalable alkaloid production. Nature Chemical Biology, 2009, 5(5): 292-300.
    [9] Becker JVW, Armstrong GO, Van der Merwe MJ, Lambrechts MG, Vivier MA, Pretorius IS. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research, 2003, 4(1): 79-85.
    [10] Ye VM, Bhatia SK. Metabolic engineering for the production of clinically important molecules: Omega-3 fatty acids, artemisinin and taxol. Biotechnology Journal, 2012, 7(1): 20-33.
    [11] Kuboyama T, Yokoshima S, Tokuyama H, Fukuyama T. Stereocontrolled total synthesis of (+)-vincristine. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33): 11966-11970.
    [12] Wang PP, Wei YJ, Fan Y, Liu QF, Wei W, Yang CS, Zhang L, Zhao GP, Yue JM, Yan X, Zhou ZH. Production of bioactive ginsenosides Rh2 and Rg3 by metabolically engineered yeasts. Metabolic Engineering, 2015, 29: 97-105.
    [13] Gaudet D, Pichette A. Process for preparing natural product derivatives from plants in a single step, particularly for preparing derivatives of betulin or lupeol from birch bark. WO200026174-A; US6280778-A; WO200026174-A2; CA2250481-A1; CA2288361-A1; AU200010217-A; US6280778-B1; CA2288361-C. 1999.
    [14] Exposito O, Bonfill M, Moyano E, Onrubia M, Mirjalili MH, Cusido RM, Palazon J. Biotechnological production of taxol and related taxoids: current state and prospects. Anti-Cancer Agents in Medicinal Chemistry, 2009, 9(1): 109-121.
    [15] Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 2013, 496(7446): 528-531.
    [16] Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, Montague MG, Venter JC, Smith HO, Hutchison CA. One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20404-20409.
    [17] Shao ZY, Zhao H, Zhao HM. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Research, 2009, 37(2): 10.
    [18] Xie WP, Lv XM, Ye LD, Zhou PP, Yu HW. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30: 69-78.
    [19] Dai ZB, Liu Y, Huang LQ, Zhang XL. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012, 109(11): 2845-2853.
    [20] 程锦锥,朱恒鹏. 中国药品市场报告. 2012版. 北京:社会科学文献出版社, 2012.
    [21] Liu D, Zhang Y, Zhou X, Yuan YJ. Research prospects of synthetic biotechnology in steroid hormone intermediate production. Chinese Bulletin of Life Sciences, 2013(10): 958-965.(in Chinese)刘夺, 张莹, 周晓, 元英进. 合成生物技术生产甾体激素中间体的研究展望. 生命科学, 2013(10): 958-965.
    [22] Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 2012, 75(3): 311-335.
    [23] Martin VJJ, Yoshikuni Y, Keasling JD. The in vivo synthesis of plant sesquiterpenes by Escherichia coli. Biotechnology and Bioengineering, 2001, 75(5): 497-503.
    [24] Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796-802.
    [25] Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD. High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnology and Bioengineering, 2006, 95(4): 684-691.
    [26] Tsuruta H, Paddon CJ, Eng D, Lenihan JR, Horning T, Anthony LC, Regentin R, Keasling JD, Renninger NS, Newman JD. High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin in Escherichia coli. PLoS One, 2009, 4(2): 12.
    [27] Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940-943.
    [28] Chang MCY, Eachus RA, Trieu W, Ro DK, Keasling JD. Engineering Escherichia coli for production of functionalized terpenoids using plant P450s. Nature Chemical Biology, 2007, 3(5): 274-277.
    [29] Lenihan JR, Tsuruta H, Diola D, Renninger NS, Regentin R. Developing an industrial artemisinic acid fermentation process to support the cost-effective production of antimalarial artemisinin-based combination therapies. Biotechnology Progress, 2008, 24(5): 1026-1032.
    [30] Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R, Horning T, Tsuruta H, Melis DJ, Owens A, Fickes S, Diola D, Benjamin KR, Keasling JD, Leavell MD, McPhee DJ, Renninger NS, Newman JD, Paddon CJ. Production of amorphadiene in yeast and its conversion to dihydroartemisinic acid precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 111-118.
    [31] Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nature Chemical Biology, 2008, 4(9): 564-573.
    [32] Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semisynthetic opioids. Nature Chemical Biology, 2014, 10(10): 837-844.
    [33] Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJJ. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One, 2015, 10(4): 15.
    [34] DeLoache WC, Russ ZN, Narcross L, Gonzales AM, Martin VJJ, Dueber JE. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465-471.
    [35] Farrow SC, Hagel JM, Beaudoin GAW, Burns DC, Facchini PJ. Stereochemical inversion of (S)-reticuline by a cytochrome P450 fusion in opium poppy. Nature Chemical Biology, 2015, 11(9): 728-732.
    [36] Winzer T, Kern M, King AJ, Larson TR, Teodor RI, Donninger SL, Li Y, Dowle AA, Cartwright J, Bates R, Ashford D, Thomas J, Walker C, Bowser TA, Graham IA. Morphinan biosynthesis in opium poppy requires a P450-oxidoreductase fusion protein. Science, 2015, 349(6245): 309-312.
    [37] Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. Complete biosynthesis of opioids in yeast. Science, 2015.
    [38] Chang MCY, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2(12): 674-681.
    [39] Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330(6000): 70-74.
    [40] Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology, 2015, 33(4): 377-U157.
    [41] Chen SW, Wang Y, Wang Y, Wang LJ, He HM. Study on anti-tumor activity of ginsenoside Rg1 and Rh1. Journal of Jilin University (Medicine Edition), 2003(1): 25-28. (in Chinese)陈声武, 王岩, 王毅, 王丽娟, 何忠梅, 王本祥. 人参皂苷Rg1和Rh1抗肿瘤作用的研究. 吉林大学学报(医学版) , 2003(1): 25-28.
    [42] Xin Y, Ni JS, Jiang X, Wang XR, Shi B, Wu JX. Inhibitory effect of 20 (S) -ginsenoside Rg3 on tumor growth. Journal of Jilin University (Medicine Edition), 2006(1): 61-63. (in Chinese) 辛颖, 倪劲松, 姜新, 王心蕊, 石博, 吴稼祥. 20(S)-人参皂苷Rg3抑制肿瘤生长的作用. 吉林大学学报(医学版), 2006(1): 61-63.
    [43] He C, Wu T, Hu XT, Liang JH, Chen P. Tumor suppression activity of ginoside Rg3 combined with TRAIL gene on human colon cancer cell line HCE8693. China Journal of Chinese Material Medica, 2004(8): 43-45. (in Chinese)何超, 吴彤, 胡晓彤, 梁建华, 陈萍. 人参皂苷Rg_3与TRAIL联合应用对大肠癌细胞株HCE8693作用的实验研究. 中国药学杂志, 2004(8): 43-45.
    [44] Qi LW, Wang CZ, Yuan CS. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry, 2011, 72(8): 689-699.
    [45] Dai ZB, Liu Y, Zhang XA, Shi MY, Wang BB, Wang D, Huang LQ, Zhang XL. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic Engineering, 2013, 20: 146-156.
    [46] Dai ZB, Wang BB, Liu Y, Shi MY, Wang D, Zhang XN, Liu T, Huang LQ, Zhang XL. Producing aglycons of ginsenosides in bakers' yeast. Scientific Reports, 2014, 4: 6.
    [47] Yan X, Fan Y, Wei W, Wang PP, Liu QF, Wei YJ, Zhang L, Zhao GP, Yue JM, Zhou ZH. Production of bioactive ginsenoside compound K in metabolically engineered yeast. Cell Research, 2014, 24(6): 770-773.
    [48] Li Q, Sun Z, Li J, Zhang Y. Enhancing beta-carotene production in Saccharomyces cerevisiae by metabolic engineering. Fems Microbiology Letters, 2013, 345(2): 94-101.
    [49] Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution. Metabolic Engineering, 2014, 21: 26-33.
    [50] Xie W, Lv X, Ye L, Zhou P, Yu H. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering. Metabolic Engineering, 2015, 30: 69-78.
    [51] Adarme-Vega TC, Thomas-Hall SR, Schenk PM. Towards sustainable sources for omega-3 fatty acids production. Current Opinion in Biotechnology, 2014, 26: 14-18.
    [52] Barclay WR, Meager KM, Abril JR. Heterotrophic production of long-chain omega-3-fatty-acids utilizing algae and algae-like microorganisms. Journal of Applied Phycology, 1994, 6(2): 123-129.
    [53] Wynn JP. Taking the fish out of fish oil. Nature Biotechnology, 2013, 31(8): 716-717.
    [54] Tavares S, Grotkjaer T, Obsen T, Haslam RP, Napier JA, Gunnarsson N. Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel delta 5-desaturase from paramecium tetraurelia. Applied and Environmental Microbiology, 2011, 77(5): 1854-1861.
    [55] Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 2002, 82(1): 43-49.
    [56] Meyer A, Kirsch H, Domergue F, Abbadi A, Sperling P, Bauer J, Cirpus P, Zank TK, Moreau H, Roscoe TJ, Zahringer U, Heinz E. Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. Journal of Lipid Research, 2004, 45(10): 1899-1909.
    [57] Shi TL, Yu AQ, Li M, Ou XY, Xing LJ, Li MC. Identification of a novel C22-delta 4-producing docosahexaenoic acid (DHA) specific polyunsaturated fatty acid desaturase gene from isochrysis galbana and its expression in Saccharomyces cerevisiae. Biotechnology Letters, 2012, 34(12): 2265-2274.
    [58] Shi TL, Yu AQ, Li M, Zhang M, Xing LJ, Li MC. Identification and characterization of a novel C20-elongase gene from the marine microalgae, pavlova viridis and its use for the reconstitution of two pathways of long-chain polyunsatured fatty acids biosynthesis in Saccharomyces cerevisiae. Biotechnology Letters, 2013, 35(8): 1271-1282.
    [59] 石桐磊. 多不饱和脂肪酸DHA合成途径在酿酒酵母中的重构. 南开大学硕士学位论文, 2013.
    [60] Shang Y, Ma YS, Zhou Y, Zhang HM, Duan LX, Chen HM, Zeng JG, Zhou Q, Wang SH, Gu WJ, Liu M, Ren JW, Gu XF, Zhang SP, Wang Y, Yasukawa K, Bouwmeester HJ, Qi XQ, Zhang ZH, Lucas WJ, Huang SW. Biosynthesis, regulation and domestication of bitterness in cucumber. Science, 2014, 346(6213): 1084-1088.
    [61] Guo J, Zhou YJ, Hillwigc ML, Shen Y, Yang L, Wang Y, Zhang X, Liu W, Peters RJ, Chen X, Zhao ZK, Huang L. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 12108-12113.
    [62] Liu Y, Hansen J, Houghton-Larsen J, Murali MP, Kumar S, Rasmussen NN, Murali PM. Producing mogroside compound by contacting mogrol and/or glucosylated mogrol with enzyme or mixture of enzymes for catalysing glucosylation of mogrol and/or glucosylated mogrol to form mogroside. WO2014086842-A1; US2015064743-A1; AU2015200486-A1; WO2014086842-A9; CA2893462-A1; SG11201503757-A1. 2013.
    [63] Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science, 2015, 349(6253): 1224-1228.
    [64] Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJJ. Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology, 2012, 30(3): 127-131.
    [65] Xiao M, Zhang Y, Chen X, Lee E-J, Barber CJS, Chakrabarty R, Desgagne-Penix I, Haslam TM, Kim Y-B, Liu E, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro D-K, Martin VJJ, Facchini PJ, Sensen CW. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. Journal of Biotechnology, 2013, 166(3): 122-134.
    [66] Gongora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, DellaPenna D, McKnight TD, O'Connor S, Buell CR. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLos One, 2012, 7(12): e52506.
    [67] Yeo Y-S, Nybo SE, Chittiboyina AG, Weerasooriya AD, Wang Y-H, Gongora-Castillo E, Vaillancourt B, Buell CR, DellaPenna D, Celiz MD, Jones AD, Wurtele ES, Ransom N, Dudareva N, Shaaban KA, Tibrewal N, Chandra S, Smillie T, Khan IA, Coates RM, Watt DS, Chappell J. Functional identification of valerena-1,10-diene synthase, a terpene synthase catalyzing a unique chemical cascade in the biosynthesis of biologically active sesquiterpenes in valeriana officinalis. Journal of Biological Chemistry, 2013, 288(5): 3163-3173.
    [68] Sleight SC, Bartley BA, Lieviant JA, Sauro HM. In-fusion BioBrick assembly and re-engineering. Nucleic Acids Research, 2010, 38(8): 2624-2636.
    [69] Jeong J-Y, Yim H-S, Ryu J-Y, Lee HS, Lee J-H, Seen D-S, Kang SG. One-step sequence-and ligation-independent cloning as a rapid and versatile cloning method for functional genomics studies. Applied and Environmental Microbiology, 2012, 78(15): 5440-5443.
    [70] Quan JY, Tian JD. Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nature Protocols, 2011, 6(2): 242-251.
    [71] Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: A one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One, 2009, 4(5): e5553.
    [72] Wang CW, Liao JC. Alteration of product specificity of Rhodobacter sphaeroides phytoene desaturase by directed evolution. Journal of Biological Chemistry, 2001, 276(44): 41161-41164.
    [73] Petschacher B, Nidetzky B. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microbial Cell Factories, 2008, 7: 12.
    [74] Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD. Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 2009, 27(8): 753-U107.
    [75] Li J, Zhang YS. Increase of betulinic acid production in Saccharomyces cerevisiae by balancing fatty acids and betulinic acid forming pathways. Applied Microbiology and Biotechnology, 2014, 98(7): 3081-3089.
    [76] Xie WP, Ye LD, Lv XM, Xu HM, Yu HW. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28: 8-18.
    [77] Farhi M, Marhevka E, Masci T, Marcos E, Eyal Y, Ovadis M, Abeliovich H, Vainstein A. Harnessing yeast subcellular compartments for the production of plant terpenoids. Metabolic Engineering, 2011, 13(5): 474-481.
    [78] Liu D, Xiao Y, Evans BS, Zhang F. Negative Feedback Regulation of fatty acid production based on a malonyl-CoA sensor-actuator. Acs Synthetic Biology, 2015, 4(2): 132-140.
    [79] Xu P, Wang W, Li L, Bhan N, Zhang F, Koffas MAG. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. Acs Chemical Biology, 2014, 9(2): 451-458.
    [80] Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. Engineering dynamic pathway regulation using stress-response promoters. Nature Biotechnology, 2013, 31(11): 1039-1046.
    [81] Ding Y, Li J, Enterina JR, Shen Y, Zhang I, Tewson PH, Mo GCH, Zhang J, Quinn AM, Hughes TE, Maysinger D, Alford SC, Zhang Y, Campbell RE. Ratiometric biosensors based on dimerization-dependent fluorescent protein exchange. Nature Methods, 2015, 12(3): 195-198.
    [82] Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11(9): 636-646.
    [83] Joung JK, Sander JD. INNOVATION TALENs: a widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 2013, 14(1): 49-55.
    [84] Sander JD, Joung JK. CRIRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347-355.
    [85] Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Current Opinion in Chemical Biology, 2012, 16(3/4): 268-277.
    [86] Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, 39(14): 6315-6325.
    [87] Zhang G, Lin Y, Qi X, Li L, Wang Q, Ma Y. TALENs-assisted multiplex editing for accelerated genome evolution to improve yeast phenotypes. Acs Synthetic Biology, 2015, 4(10): 1101-1111.
    [88] Jakounas T, Sonde I, Herrgard M, Harrison SJ, Kristensen M, Pedersen LE, Jensen MK, Keasling JD. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metabolic Engineering, 2015, 28: 213-222.
    [89] Ronda C, Maury J, Jakociunas T, Jacobsen SAB, Germann SM, Harrison SJ, Borodina I, Keasling JD, Jensen MK, Nielsen AT. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae. Microbial Cell Factories, 2015, 14: 97.
    [90] Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD, Habib N, Gootenberg JS, Nishimasu H, Nureki O, Zhang F. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature, 2015, 517(7536): 583-U332.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王冬,戴住波,张学礼. 酵母人工合成细胞生产植物源天然产物[J]. 微生物学报, 2016, 56(3): 516-529

复制
分享
文章指标
  • 点击次数:1323
  • 下载次数: 5629
  • HTML阅读次数: 582
  • 引用次数: 0
历史
  • 收稿日期:2015-09-14
  • 最后修改日期:2015-12-04
  • 在线发布日期: 2016-03-03
文章二维码