亮氨酰氨肽酶基因的阻断对刺糖多孢菌生长及次级代谢产物合成的影响
作者:
基金项目:

国家"863"计划(2011AA10A203);国家"973"计划(2012CB722301);国家自然科学基金(31070006);湖南省2011协同创新中心项目(20134486);湖南省教育厅项目(10CY013)


Disruption of leucyl aminopeptidase gene affects phenotypes and second metabolite production of Saccharopolyspora spinosa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 构建亮氨酰氨肽酶基因(pepA)被阻断的刺糖多孢菌工程菌株,并鉴定该基因对刺糖多孢菌菌丝形态、生物量、菌体全蛋白表达水平及产多杀菌素能力的影响,探究该基因调控多杀菌素合成的可能机制。[方法] 利用PCR扩增刺糖多孢菌中的pepA基因同源片段,经酶切连接技术构建敲除载体pOJ260-pepA;通过接合转移和单交换同源重组将该载体整合至刺糖多孢菌染色体中,获得工程菌株S. sp-△pepA;利用培养特征、形态学、高效液相色谱、SDS-PAGE等方法对菌株进行研究分析。[结果] 工程菌株S. sp-△pepA菌丝片段化程度加剧,生长态势被延缓且生物量降低,但有效促进了多杀菌素的生物合成。阻断亮氨酰胺肽酶基因的表达使刺糖多孢菌菌体全蛋白表达情况发生明显改变,找到表达水平显著上调的差异蛋白核糖体蛋白亚基和醛基脱氢酶,核糖体蛋白亚基通过影响蛋白质代谢对菌体生长产生影响;醛基脱氢酶则可与乙醇脱氢酶、乙酰辅酶A的合成酶相互作用影响辅酶A合成,而辅酶A是合成多杀菌素的重要底物。[结论] 在刺糖多孢菌合成多杀菌素的次级代谢过程中,pepA基因作为负调控因子发挥作用。

    Abstract:

    [Objective] In order to investigate effects of leucyl aminopeptidase on mycelia morphology, growth rate, spinosad yield and protein expression in Saccharopolyspora spinosa by disrupting its encoding gene pepA and analyzing the characteristics of engineered S. spinosa. [Methods] The pepA gene of S. spinosa was amplified based on the conserved sequence and cloned into Escherichia coli-Streptomyces shuttle vector pOJ260 to generate pOJ260-pepA, which was transformed into S. spinosa by conjugation. Mycelium observation, SDS-PAGE and HPLC were used to analyze the engineered strain. [Results] Mycelia in S. sp-ΔpepA displayed a much higher degree of fragmentation and fewer branches compared to that of parental strain. Meanwhile, the growth rate of S. sp-ΔpepA was retarded and its biomass was reduced. Shake-flask fermentation demonstrated that spinosad yield increased by 122% in S. sp-ΔpepA strain compared to that of parental strain. SDS-PAGE analysis showed that protein expression profile of the engineered strain significantly changed. [Conclusion] The pepA gene negatively regulates the biosynthesis of spinosad and disruption of pepA gene could affect the mycelial morphology and growth of S. spinosa.

    参考文献
    [1] Kim H, Lipscomb WN. Structure and mechanism of bovine lens leucine aminopeptidase. Advances in Enzymology and Related Areas of Molecular Biology, 1994, 68:153-213.
    [2] Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases:diversity in structure and function. Biological Chemistry, 2006, 387(12):1535-1544.
    [3] Sträter N, Sherrat DJ, Collons SD. X-ray structure of aminopeptidase A from Escherichia coli and a model for the nucleoprotein complex in Xer-site specific recombination. The EMBO Journal, 1999, 18(16):4513-4522.
    [4] Tu CJ, Park SY, Walling LL. Isolation and characterization of the neutral leucine aminopeptidase (LapN) of tomato. Plant Physiology, 2003, 132(1):243-255.
    [5] Devroede N, Huysveld N, Charlier D. Mutational analysis of intervening sequences connecting the binding sites for integration host factor, PepA, PurR, and RNA polymerase in the control region of the Escherichia coli carAB operon, encoding carbamoylphosphate synthase. Journal of Bacteriology, 2006, 188(9):3236-3245.
    [6] Song E, Rajesh T, Lee BR, Kim EJ, Jeon JM, Park SH, Park HY, Choi KY, Kim YG, Yanq YH, Kim BG. Deletion of an architectural unit, leucyl aminopeptidase (SCO2179), in Streptomyces coelicolor increases actinorhodin production and sporulation. Applied Microbiology and Biotechnology, 2013, 97(15):6823-6833.
    [7] Kirst HA, Michel KH, Martin JW, Creemer LC, Chio EH, Yao RC, Nakatsukasa WM, Boeck LD, Occolowitz JL, Paschal JW, Deeter JB, Jones ND, Thompson GD. A83543A-D, unique fermentation-derived tetracyclic macrolides. Tetrahedron Letters, 1991, 32(37):4839-4842.
    [8] Sparks TC, Crouse GD, Durst G. Natural products as insecticides:the biology, biochemistry and quantitative structure-activity relationships of spinosyns and spinosoids. Pest Management Science, 2001, 57(10):896-905.
    [9] Bierman M, Logan R, O'Brien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.. Gene, 1992, 116(1):43-49.
    [10] Pan HX, Li JA, He NJ, Chen JY, Zhou YM, Shao L, Chen DJ. Improvement of spinosad production by overexpression of gtt and gdh controlled by promoter PermE in Saccharopolyspora spinosa SIPI-A2090. Biotechnology Letters, 2011, 33(4):733-739.
    [11] Pan YY, Lu C, Dong HL, Yu LJ, Liu G, Tan HR. Disruption of rimP-SC, encoding a ribosome assembly cofactor, markedly enhances the production of several antibiotics in Streptomyces coelicolor. Microbial Cell Factories, 2013, 12(1):65-81.
    [12] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning:a laboratory manual. New York:Cold Spring Harbor Laboratory Press, 1982.
    [13] Matsushima P, Brouqhton MC, Turner JR, Baltz RH. Conjugal transfer of cosmid DNA from Escherichia coli to Saccharopolyspora spinosa:effects of chromosomal insertions on macrolide A83543 production. Gene, 1994, 146(1):39-45.
    [14] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces Genetics. Norwich, UK:The John Innes Foundation, 2000, 161-211.
    [15] Swiercz JP, Nanji T, Gloyd M, Guarné A, Elliot MA. A novel nucleoid-associated protein specific to the actinobacteria. Nucleic Acids Research, 2013, 41(7):4171-4184.
    [16] Luo YS, Ding XZ, Xia LQ, Huang F, Li WP, Huang SY, Tang Y, Sun YJ. Comparative proteomic analysis of Saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Science, 2011, 9:40.
    [17] Yang Q, Ding XZ, Liu XM, Liu S, Sun YJ, Yu ZQ, Hu SB, Rang J, He H, Xia LQ. Differential proteomic profiling reveals regulatory proteins and novel links between primary metabolism and spinosad production in Saccharopolyspora spinosa. Microbial Cell Factories, 2014, 13(1):27-43.
    [18] Li Y, Chang C, Yang KQ. Biosynthetic pathway and synthetic strategy of spinosad-a review. Acta Microbiologica Sinica, 2011, 51(11):1431-1439. (in Chinese) 李月, 常城, 杨克迁. 多杀菌素生物合成途径及改造策略. 微生物学报2011, 51(11):1431-1439.
    [19] Wang C, Zhang XL, Chen Z, Wen Y, Song Y. Strain construction for enhanced production of spinosad via intergeneric protoplast fusion. Canadian Journal of Microbiology, 2009, 55(9):1070-1075.
    [20] Yang YH, Song E, Willemse J, Park SH, Kim WS, Kim EJ, Lee BR, Kim JN, van Wezel GP, Kim BG. A novel function of Streptomyces integration host factor (sIHF) in the control of antibiotic production and sporulation in Streptomyces coelicolor. Antonie Van Leeuwenhoek, 2012, 101(3):479-492.
    [21] Le Minh PN, Devroede N, Massant J, Maes D, Charlier D. Insights into the architecture and stoichiometry of Escherichia coli PepA·DNA complexes involved in transcriptional control and site-specific DNA recombination by atomic force microscopy. Nucleic Acids Research, 2009, 37(5):1463-1476.
    [22] Noens EEE, Mersinias V, Traag BA, Smith CP, Koerten HK, van Wezel GP. SsgA-like proteins determine the fate of peptidoglycan during sporulation of Streptomyces coelicolor. Molecular Microbiology, 2005, 58(4):929-944.
    [23] van Wezel GP, van der Meulen J, Kawamoto S, Luiten RGM, Koerten HK, Kraal B. SsgA is essential for sporulation of Streptomyces coelicolor A3(2) and affects hyphal development by stimulating septum formation. Journal of Bacteriology, 2000, 182(20):5653-5662.
    [24] van Wezel GP, van der Meulen J, Taal E, Koerten H, Kraal B. Effects of increased and deregulated expression of cell division genes on the morphology and on antibiotic production of streptomycetes. Antonie van Leeuwenhoek, 2000, 78(3/4):269-276.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨燕,罗林根,徐妙,夏立秋. 亮氨酰氨肽酶基因的阻断对刺糖多孢菌生长及次级代谢产物合成的影响[J]. 微生物学报, 2016, 56(4): 629-642

复制
分享
文章指标
  • 点击次数:930
  • 下载次数: 1504
  • HTML阅读次数: 484
  • 引用次数: 0
历史
  • 收稿日期:2015-06-24
  • 最后修改日期:2015-09-07
  • 在线发布日期: 2016-03-30
文章二维码