崇测冰帽不同的冰川样品可培养细菌群落结构差异
作者:
基金项目:

国家自然科学基金(31100369,41101072,41330526)


Difference of community structure among culturable bacteria in different glacial samples on Chongce Ice Cap
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 研究细菌群落组成在西昆仑崇测冰帽冰川雪样、冰碛物和土样中的差异。[方法] 通过传统的纯培养和菌株16S rRNA基因序列鉴定,分析菌株在门水平和属水平的群落结构。[结果] 冰川细菌由Actinobacteria、Firmicutes、Proteobacteria和Bacteroidetes 4个门组成。雪样以Proteobacteria为优势,而土样和冰碛物则以Actinobacteria为优势。在属的水平上,冰川土样中的优势属仅有Arthrobacter,雪样中的优势属主要有MethylobacteriumModestobacterHymenobacterBrevundimonasBacillus这5种。雪环境的细菌群落结构与冰碛物和土样的差异性较大,而冰碛物和土样之间的差异性不大。Skermanella可能为崇测冰帽所特有的细菌。[结论] 初步说明了在冰川退缩的气候环境下,冰川雪样细菌多样性的脆弱性, 以及冰川雪环境细菌资源保护的重要性。

    Abstract:

    [Objective] We studied the difference of bacterial community composition among glacial snow, moraine deposits and glacial soil on Chongce Ice Cap of West Kunlun Mountains. [Methods] Based on traditional culture-dependent and 16S rRNA sequence analysis, we analyzed the community structure of bacteria on the level of genus and phylum. [Results] Results show that glacial bacteria were composed of Firmicutes, Proteobacteria, Actinobacteria and Bacteroidetes on the phylum level. Glacial snow was dominated by Proteobacteria, whereas glacial soil and moraine deposits were dominated by Actinobacteria. On the genus level, glacial soil was dominated by Arthrobacter, while glacial snow was dominated by Methylobacterium, Modestobacter, Hymenobacter, Brevundimonas and Bacillus. Bacterial composition was similar between glacial soil and moraine deposits, but different from glacial snow. Skermanella may be unique on Chongce Ice Cap. [Conclusion] Our study indicated the vulnerability of bacterial diversity in glacial snow with glacial retreat, and the importance of bacterial resources preservation on glacial snow environments.

    参考文献
    [1] Xiang SR, Yao TD, An LZ, Wu GJ, Xu BQ, Ma XJ, Li Z, Wang JX, Yu WS. Vertical quantitative and dominant population distribution of the bacteria isolated from the Muztagata ice core. Science in China (Series D:Earth Sciences), 2005, 48(10):1728-1739.
    [2] Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ. Phylogenetic and physiological diversity of bacteria isolated from puruogangri ice core. Microbial Ecology, 2008, 55(3):476-488.
    [3] Yao TD, Liu YQ, Kang SC, Jiao NZ, Zeng YH, Liu XB, Zhang YJ. Bacteria variabilities in a Tibetan ice core and their relations with climate change. Global Biogeochemical Cycles, 2008, 22(4):GB4017, DOI:10.1029/2007GB003140.
    [4] Wu XK, Zhang W, Liu GX, Yang X, Hu P, Chen T, Zhang GS, Li ZQ. Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China. Environmental Research Letters, 2012, 7, DOI:10.1088/1748-9326/7/1/014038.
    [5] Liu YQ, Yao TD, Jiao NZ, Kang SC, Huang SJ, Li Q, Wang KJ, Liu XB. Culturable bacteria in glacial meltwater at 6,350 m on the East Rongbuk Glacier, Mount Everest. Extremophiles, 2009, 13(1):89-99.
    [6] Liu YQ, Yao TD, Jiao NZ, Kang SC, Zeng YH, Huang SJ. Microbial community structure in moraine lakes and glacial meltwaters, Mount Everest. FEMS Microbiology Letters, 2006, 265(1):98-105.
    [7] Liu YQ, Yao TD, Jiao NZ, Tian LD, Hu AY, Yu WS, Li SH. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier. Extremophiles, 2011, 15(3):411-421.
    [8] Zhang WJ, An RZ, Yang HA, Jiao KQ. Conditions of glacier development and some glacial features in the West Kunlun Mountains. Bulletin of Glacier Research, 1989, 7:49-58.
    [9] Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24):4876-4882.
    [10] González-Toril E, Amils R, Delmas RJ, Petit J-R, Komárek J, Elster J. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples. Biogeosciences, 2009, 6(1):33-44.
    [11] Jacobsen D, Milner AM, Brown LE, Dangles O. Biodiversity under threat in glacier-fed river systems. Nature Climate Change, 2012, 2:361-364.
    [12] Brown LE, Hannah DM, Milner AM. Vulnerability of alpine stream biodiversity to shrinking glaciers and snowpacks. Global Change Biology, 2007, 13(5):958-966.
    [13] Milner AM, Brown LE, Hannah DM. Hydroecological response of river systems to shrinking glaciers. Hydrological Processes, 2009, 23(1):62-77.
    [14] Finn DS, Räsänen K, Robinson CT. Physical and biological changes to a lengthening stream gradient following a decade of rapid glacial recession. Global Change Biology, 2012, 16(12):3314-3326.
    [15] Cárdenas ML, Gosling WD, Sherlock SC, Poole I, Pennington RT, Mothes P. The response of vegetation on the Andean Flank in western Amazonia to Pleistocene climate change. Science, 2011, 331(6020):1055-1058.
    [16] Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB. Consequences of climate change on the tree of life in Europe. Nature, 2011, 470(7335):531-534.
    [17] Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, Asher J, Fox R, Clarke RT, Lawton JH. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science, 2004, 303(5665):1879-1881.
    [18] Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 2008, 322(5899):258-261.
    [19] Walther GR, BeißnerS, Burga CA. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 2005, 16(5):541-548.
    [20] Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ. Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 2005, 8(11):1138-1146.
    [21] Hiorns WD, Methé BA, Nierzwicki-Bauer SA, Zehr JP. Bacterial diversity in Adirondack mountain lakes as revealed by 16S rRNA gene sequences. Applied and Environmental Microbiology, 1997, 63(7):2957-2960.
    [22] Zwart G, Crump BC, Kamst-van Agterveld MP, Hagen F, Han SK. Typical freshwater bacteria:an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 2002, 28(2):141-155.
    [23] Edwards A, Douglas B, Anesio AM, Rassner SM, Irvine-Fynn TDL, Sattler B, Griffith GW. A distinctive fungal community inhabiting cryoconite holes on glaciers in Svalbard. Fungal Ecology, 2013, 6(2):168-176.
    [24] Stres B, Sul WJ, Murovec B, Tiedje JM. Recently deglaciated high-altitude soils of the Himalaya:diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. PLoS One, 2013, 8(9):e76440, DOI:10.1371/journal.pone.0076440.
    [25] Han JK, Liu YX, Liu YJ. Summer temperature trend around Taklimakan Desert reconstructed by the δ18O records of Chongce Ice Core, west Kunlun Mts. Arid Land Geography, 2007, 30(1):89-93. (in Chinese) 韩建康, 刘业祥, 刘永健. 塔克拉玛干沙漠周边地区20世纪前半叶夏季气温趋势变化. 干旱区地理, 2007, 30(1):89-93.
    [26] 闫沛迎. 南极与青藏高原冰川雪细菌的多样性研究. 中国科学院大学博士学位论文, 2013.
    [27] Zhang S, Hou S, Qin X, Du W, Liang F, Li Z. Preliminary study on effects of glacial retreat on the dominant glacial snow bacteria. Geomicrobiology Journal, 2015, 32:113-118.
    [28] Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X. Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles, 2009, 13(3):411-423.
    [29] Zhang S, Hou S, Ma X, Qin D, Chen T. Culturable bacteria in Himalayan glacial ice in response to atmospheric circulation. Biogeosciences, 2007, 4(1):1-9.
    [30] Srinivas TNR, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GSN, Shivaji S. Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles, 2011, 15(6):673-690.
    [31] Miteva VI, Sheridan PP, Brenchley JE. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Applied and Environmental Microbiology, 2004, 70(1):202-213.
    [32] Schütte UME, Abdo Z, Foster J, Ravel J, Bunge J, Solheim B, Forney LJ. Bacterial diversity in a glacier foreland of the high Arctic. Molecular Ecology, 2010, 19 (S1):54-66.
    [33] Huang JP, Swain AK, Thacker RW, Ravindra R, Andersen DT, Bej AK. Bacterial diversity of the rock-water interface in an East Antarctic freshwater ecosystem, Lake Tawani (P). Aquatic Biosystems, 2013, 9:4, DOI:10.1186/2046-9063-9-4.
    [34] Xiang SR, Yao TD, An LZ, Li Z, Wu GJ, Wang YQ, Xu BQ, Wang JX. Change of bacterial community in the Malan ice core and its relation to climate and environment. Chinese Science Bulletin, 2004, 49(17):1869-1875.
    [35] Xiang SR, Yao TD, An LZ, Xu BQ, Li Z, Wu GJ, Wang YQ, Ma S, Chen XR. Bacterial diversity in Malan ice core from the Tibetan Plateau. Folia Microbiologica, 2004, 49(3):269-275.
    [36] Zhang SH, Yang GL, Wang YT, Hou SG. Abundance and community of snow bacteria from three glaciers in the Tibetan Plateau. Journal of Environmental Sciences, 2010, 22(9):1418-1424.
    [37] Giudice AL, Caruso C, Mangano S, Bruni V, de Domenico M, Michaud L. Marine bacterioplankton diversity and community composition in an Antarctic coastal environment. Microbial Ecology, 2012, 63(1):210-223.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张淑红,侯书贵,包格日乐,许浩,刘亚平,李治国. 崇测冰帽不同的冰川样品可培养细菌群落结构差异[J]. 微生物学报, 2016, 56(4): 708-718

复制
分享
文章指标
  • 点击次数:818
  • 下载次数: 1842
  • HTML阅读次数: 606
  • 引用次数: 0
历史
  • 收稿日期:2015-08-12
  • 最后修改日期:2015-09-13
  • 在线发布日期: 2016-03-30
文章二维码