两种方法形成菌丝球固定2-氯酚降解菌的对比
作者:
基金项目:

国家水体污染控制与治理重大专项(2012ZX07202-004);沈阳市科技计划项目(F13-316-1-66);辽宁省博士启动基金(2014010520-301);辽宁省教育厅科学研究一般项目(L2013453)


Comparison of two mycelial pellets formation methods to immobilize o-chlorophenol degradation bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 系统研究吸附法和同时培养法对所形成混合菌丝球的外观形态、内部结构及其去除2-氯酚效果的影响。[方法] 采用吸附法和同时培养法将可降解2-氯酚的光合细菌PSB-1D固定在黄孢原毛平革菌(Phanerochaete chrysosporium) DH-1发酵而成的菌丝球上,形成混合菌丝球。以单一菌丝球为对照,利用光学显微镜、扫描电镜等仪器观察混合菌丝球的外观形态和内部结构,考察2种方法对混合菌丝球成球效果的影响;以无菌培养液为空白对照,考察游离光合细菌、单一菌丝球、2种方法形成混合菌丝球对2-氯酚的降解效能。[结果] 在吸附法形成的混合菌丝球上,光合细菌主要集中在过渡区;而同时培养法将光合细菌牢固地包埋在菌丝球内核区,并大量簇状附着生长在菌丝交联的空隙处和每根菌丝上。在接种等量孢子和光合细菌的前提下,同时培养法较吸附法操作时间更短,成球数量更多,形成菌丝球干湿比更大,单位菌丝干重上固定的细菌数量更多。菌丝球降解体系和游离光合细菌对2-氯酚的降解均符合一级动力学特征。同时培养法形成的混合菌丝球降解效果最好,7 d内对初始浓度为50 mg/L的2-氯酚降解率可达89%以上,降解速率常数为0.3286 mg/(L·d),2-氯酚半衰期t1/2为2.8 d。[结论] 首次报道黄孢原毛平革菌包埋固定化光合细菌形成混合菌丝球。该研究为生物质固定化材料的实际应用提供理论依据。

    Abstract:

    [Objective] To find an efficient and fast method for microbial immobilization, we compared simultaneity culture method and adsorption method on morphology and intrastructure of combined mycelial pellets, as well as their o-chlorophenol biodegradation efficiency. [Methods] The o-chlorophenol degrading photosynthetic bacterium PSB-1D was immobilized onto mycelial pellets formed by Phanerochaete chrysosporium DH-1 to form combined mycelial pellets. The morphology and intrastructure of pellets formed by two immobilization methods were observed by optical microscope and scanning electron microscope. Then, their differences were analyzed. Using the sterile medium as control, o-chlorophenol removal efficiency of free photosynthetic bacteria, single mycelial pellets and combined mycelial pellets formed by two methods were studied. [Results] Photosynthetic bacteria were largely concentrated in the core region of pellets formed by simultaneity culture method and grew in clusters on each mycelium and their intersections. As compared with simultaneity culture method, photosynthetic bacteria mainly grew in the transition region of pellets formed by adsorption method. With the same inoculation amount of spores and photosynthetic bacteria, the simultaneity culture method could immobilize more bacteria with little time. Moreover, average diameter, dry weight and dry wet ratio of pellets formed by simultaneity culture method were bigger than that by adsorption method, and their desorption amount were less. The o-chlorophenol degradation followed a first-order kinetics model. The combined mycelial pellets formed by simultaneity culture method could degrade above 89% of o-chlorophenol in medium with an initial concentration of 50 mg/L after incubation for 7 days. And the half-life periods (t1/2) were shortened to 2.8 days. [Conclusion] The study provides the theoretical foundation for the practical application of the new biomass carrier to organic wastewater treatment.

    参考文献
    [1] Huang LP, Shi YH, Wang N, Dong YS. Anaerobic/aerobic conditions and biostimulation for enhanced chlorophenols degradation in biocathode microbial fuel cells. Biodegradation, 2014, 25(4):615-632.
    [2] Li GW, Liu H, Zhang F, Du GC, Chen J. Real time PCR quantification of ammonia-oxidizing bacteria in aerobic granular sludge and activated sludge influenced by pentachlorophenol. Acta Microbiologica Sinica, 2007, 47(1):136-140. (in Chinese)李光伟, 刘和, 张峰, 堵国成, 陈坚. 荧光定量PCR监测五氯酚对好氧颗粒污泥和活性污泥中氨氧化细菌数量的影响. 微生物学报, 2007, 47(1):136-140.
    [3] Gao NY, Zhu SM, Ma Y, Rong WL, Zhou SD, Lu NX. UV/H2O2 photochemical degradation of 2,4,6-trichlorophenol. Journal of Central South University (Science and Technology), 2013, 44(3):1262-1268. (in Chinese)高乃云, 祝淑敏, 马艳, 戎文磊, 周圣东, 陆纳新. 2,4,6-三氯酚的UV/H2O2光化学降解. 中南大学学报(自然科学版), 2013, 44(3):1262-1268.
    [4] United States Environmental Protection Agency. National recommended water quality criteria. Report EPA 822-R-02-047. Washington. D C.:EPA, 2002.
    [5] Idi A, Hanif Md Nor M, Firdaus Abdul Wahab M, Ibrahim Z. Photosynthetic bacteria:an eco-friendly and cheap tool for bioremediation. Reviews in Environmental Science and Biotechnology, 2015, 14(2):271-285.
    [6] Meng JY, Feng FY, Ge RL. Study on degradation of naphthalene with immobilized photosynthetic bacteria. Journal of Inner Mongolia Agricultural University, 2012, 33(12):99-102. (in Chinese)孟建宇, 冯福应, 格日勒. 光合细菌固定化降解萘的研究. 内蒙古农业大学学报, 2012, 33(12):99-102.
    [7] Zhao LJ, Ma F, Shan D, Gao M. Immobilized effect of bacteria by mycelial pellet of Penicillum Y3. Journal of Jiangsu University (Natural Science Edition), 2007, 28(5):446-449. (in Chinese)赵立军, 马放, 山丹, 高敏. 曲霉菌丝球Y3对细菌的固定化效能. 江苏大学学报(自然科学版), 2007, 28(5):446-449.
    [8] Hamanaka T, Higashiyama K, Fujikawa S, Park E. Mycelial pellet intrastructure and visualization of mycelia and intracellular lipid in a culture of Mortierella alpina. Applied Microbiology and Biotechnology, 2001, 56(1):233-238.
    [9] Liu YS, Wu JY. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4):623-628.
    [10] Zhang HT, Huang Y, Fu YQ. Effects of pellet characteristics on L-lactic acid fermentation by Rhizopus oryzae. Acta Microbiologica Sinica, 2015, 55(3):372-378. (in Chinese)章华婷, 黄莹, 付永前. 米根霉菌球特性对乳酸发酵的影响. 微生物学报, 2015, 55(3):372-378.
    [11] Zhang S, Ma F, Shan D, Wei L. The aniline purifying efficiency of a combined mycelial pellet. Journal of Harbin Engineering University, 2010, 31(6):786-790. (in Chinese)张斯, 马放, 山丹, 魏利. 混合菌丝球苯胺净化效能研究. 哈尔滨工程大学学报, 2010, 31(6):786-790.
    [12] Wang HL, Li P, Jin QL, Qin G. Specific aerobic granules can be developed in a completely mixed tank reactor by bioaugmentation using micro-mycelial pellets of Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2014, 98(6):2687-2697.
    [13] Luo J, Hu YY, Zhong HT. Removal of Cr(VI) in solution by Aspergillus fumisynnematus mycelia:reduction and biosorption. Acta Scientiae Circumstantiae, 2007, 27(10):1585-1592. (in Chinese)罗隽, 胡勇有, 仲海涛. 烟束曲霉菌丝球对Cr(VI)的去除-还原与吸附作用. 环境科学学报, 2007, 27(10):1585-1592.
    [14] Sathishkumar M, Murugesan GS, Ayyasamy PM, Swaminathan K, Lakshmanaperumalsamy P. Bioremediation of Arsenic contaminated groundwater by modified mycelial pellets of Aspergillus fumigatus. Bulletin of Environmental Contamination and Toxicology, 2004, 72(3):617-624.
    [15] Yesilada O, Yildirim SC, Birhanli E, Apohan E, Asma D, Kuru F. The evaluation of pre-grown mycelial pellets in decolorization of textile dyes during repeated batch process. World Journal of Microbiology and Biotechnology, 2010, 26(1):33-39.
    [16] Wu J, Zhong S, Li YC. Biosorption characteristics and mechanism of Pb2+ by Phanerochaete chrysosporium. Research of Environmental Sciences, 2010, 23(6):754-761. (in Chinese)吴涓, 钟升, 李玉成. 黄孢原毛平革菌(Phanerochaete chrysosporium)对Pb2+的生物吸附特性及吸附机理. 环境科学研究, 2010, 23(6):754-761.
    [17] Zhang S, Li A, Cui D, Yang JX, Ma F. Performance of enhanced biological SBR process for aniline treatment by mycelial pellet as biomass carrier. Bioresource Technology, 2011, 102(6):4360-4365.
    [18] Shan D, Ma F, Zhang S, Wang C. Comparative study of two immobilization technology-simultaneity culture and adsorption. Journal of Harbin Institute of Technology, 2012, 44(4):53-57. (in Chinese)山丹, 马放, 张斯, 王晨. 同时培养法与吸附法微生物固定化对比. 哈尔滨工业大学学报, 2012, 44(4):53-57.
    [19] Hu XM, Dong YH, Li L, Lu J, He YD, Gao Y. Biodegradation characteristics of o-chlorophenol with photosynthetic bacteria PSB-1D. Environmental Science, 2010, 31(7):1672-1678. (in Chinese)胡筱敏, 董怡华, 李亮, 卢娟, 和英滇, 高阳. 光合细菌PSB-1D对2-氯苯酚的降解特性研究. 环境科学, 2010, 31(7):1672-1678.
    [20] Lei DZ, Yu SJ. Morphology of mycelial pellets during the submerged culture of Grifola frondosa. Acta Edulis Fungi, 2003, 10(1):6-11. (in Chinese)雷德柱, 于淑娟. 灰树花深层发酵过程中菌丝球形态结构的研究. 食用菌学报, 2003, 10(1):6-11.
    [21] Ławniczak Ł, Kaczorek E, Olszanowski A. The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia. World Journal of Microbiology and Biotechnology, 2011, 27(5):1183-1188.
    [22] Zhou Y, Du JX, Tsao GT. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Applied Biochemistry and Biotechnology, 2000, 84(1):779-789.
    [23] Grimm LH, Kelly S, Krull R, Hempel DC. Morphology and productivity of filamentous fungi. Applied Microbiology and Biotechnology, 2005, 69(4):375-384.
    [24] 朱虹. 菌丝球形成过程及其影响因素的研究. 哈尔滨工业大学硕士学位论文, 2007.
    [25] Rudolf C, Grammel H. Fructose metabolism of the purple non-sulfur bacterium Rhodospirillum rubrum:effect of carbon dioxide on growth, and production of bacteriochlorophyll and organic acids. Enzyme and Microbial Technology, 2012, 50(4/5):238-246.
    [26] Kamei I, Kogura R, Kondo R. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Applied Microbiology and Biotechnology, 2006, 72(3):566-575.
    [27] Teramoto H, Tanaka H, Wariishi H. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 2004, 66(3):312-317.
    相似文献
    引证文献
引用本文

董怡华,李鹏,何江海,李亮,胡筱敏. 两种方法形成菌丝球固定2-氯酚降解菌的对比[J]. 微生物学报, 2016, 56(5): 753-764

复制
相关视频

分享
文章指标
  • 点击次数:808
  • 下载次数: 2082
  • HTML阅读次数: 559
  • 引用次数: 0
历史
  • 收稿日期:2015-06-30
  • 最后修改日期:2015-10-18
  • 在线发布日期: 2016-05-06
文章二维码