Abstract:As a ubiquitous metalloid in the environment, arsenic (As) has attracted concerns by humans due to its strong carcinogenic property. Environmental As fate is often affected by physico-chemical and biological factors, of which microbe-mediated arsenic transformation predominates. Arsenic uptake, redox, methylation, sequestration and efflux have been verified to be involved in As resistance in microbes. In some microbes, As transformation contributes to detoxification, while some can obtain the energy for their growth and reproduction from this process. Here we reviewed the mechanisms of microbe-mediated As uptake, transformation, sequestration and efflux, which may help elucidate As geochemical cycling and provide the methods to remediate As-contaminated soils and waters, and to reduce As uptake by crops.