荧光蛋白标签对gD囊膜蛋白在BHK-21细胞亚细胞定位的影响
作者:
基金项目:

新疆维吾尔自治区高等学校科研计划项目(XJEDU2014S024)


Impact of fluorescent protein tag on gD envelope protein subcellular localization in BHK-21 cells
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 探究荧光蛋白标签对马疱疹病毒I型(Equine herpes virus type 1, EHV-1) gD囊膜蛋白亚细胞定位的影响。[方法] 以EHV-1基因组为模板利用PCR扩增gD全基因,分别克隆至pAcGFP1-C1和pDsRed2-N1质粒,构建pAc-GFP-gD (GFP-gD)和pDs-gD-Red (gD-Red)重组质粒;将GFP基因插入gD基因信号肽序列之后并克隆至PVAX-1质粒,构建PVAX-S-GFP-gD' (S-GFP-gD')重组质粒;将Flag标签序列与gD囊膜蛋白N端序列融合后并克隆至pVAX-1表达载体,构建pVAX-Flag-gD (Flag-gD)重组质粒。将4种不同重组真核表达质粒分别转染BHK-21细胞,通过激光共聚焦显微镜对不同融合蛋白gD进行亚细胞定位。[结果] 成功构建4种不同的融合蛋白gD真核表达载体;在BHK-21细胞单独表达时,不同融合蛋白gD绝大部分都定位于高尔基体,极少量定位于细胞核内。[结论] 不同插入位点的荧光蛋白标签对gD囊膜蛋白亚细胞定位无明显影响,这对今后研究其它蛋白亚细胞定位提供参考。

    Abstract:

    [Objective] The fluorescent protein and gD envelope protein of equine herpes virus type 1 (EHV-1) were used to study the impact of tags on gD protein subcellular localization in BHK-21 cells. [Methods] With the EHV-1 genome as a template, the gD complete gene was amplified by PCR technique. The product of PCR was cloned to pAcGFP1-C1 and pDsRed2-N1 plasmids. The recombinant plasmids were designated as pAc-GFP-gD (GFP-gD) and pDs-gD-Red (gD-Red). The GFP gene was inserted into the posterior position of gD gene signal peptide sequence. The modified gD gene signal peptide sequence was cloned to pVAX-1 plasmid, so that pVAX-S-GFP-gD' (S-GFPgD') recombinant plasmid was constructed. Meanwhile, the flag tag was added to N-terminal of gD sequence and they were cloned to pVAX-1 expression vector for constructing pVAX-Flag-gD recombinant plasmid. The BHK-21 cells were transfected with the 4 different recombinant plasmids and the subcellular localizations of fusion proteins were determined by lasar confocal scan microscopy. [Results] Four eukaryotic expression vectors were constructed successfully. In BHK-21 cells, the vast majority of gD envelope proteins was localized in Golgi, and a small amount of gD was localized in the nucleus. [Conclusion] Our finding reveals that the fluorescent protein of different insertion sites has no significant effects on the subcellular localization of gD, and provides a useful reference for other researchers.

    参考文献
    [1] Grinde B. Herpesviruses: latency and reactivation-viral strategies and host response. Journal of Oral Microbiology, 2013, 5: 22766.
    [2] Ma GG, Azab W, Osterrieder N. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)-masters of co-evolution and a constant threat to equids and beyond. Veterinary Microbiology, 2013, 167(1/2): 123-134.
    [3] Meckes DG Jr, Marsh JA, Wills JW. Complex mechanisms for the packaging of the UL16 tegument protein into herpes simplex virus. Virology, 2010, 398(2): 208-213.
    [4] Maric M, Haugo AC, Dauer W, Johnson D, Roller RJ. Nuclear envelope breakdown induced by herpes simplex virus type 1 involves the activity of viral fusion proteins. Virology, 2014, 460-461: 128-137.
    [5] Sugimoto K, Uema M, Sagara H, Tanaka M, Sata T, Hashimoto Y, Kawaguchi Y. Simultaneous tracking of capsid, tegument, and envelope protein localization in living cells infected with triply fluorescent herpes simplex virus 1. Journal of Virology, 2008, 82(11): 5198-5211.
    [6] Chi JHI, Harley CA, Mukhopadhyay A, Wilson DW. The cytoplasmic tail of herpes simplex virus envelope glycoprotein D binds to the tegument protein VP22 and to capsids. Journal of General Virology, 2005, 86(2): 253-261.
    [7] Sasaki M, Hasebe R, Makino Y, Suzuki T, Fukushi H, Okamoto M, Matsuda K, Taniyama H, Sawa H, Kimura T. Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes to Cells, 2011, 16(4): 343-357.
    [8] Kurtz BM, Singletary LB, Kelly SD, Frampton AR Jr. Equus caballus major histocompatibility complex class I is an entry receptor for equine herpesvirus type 1. Journal of Virology, 2010, 84(18): 9027-9034.
    [9] Zhang N, Yan JH, Lu GW, Guo ZF, Fan Z, Wang JW, Shi Y, Qi JX, Gao GF. Binding of herpes simplex virus glycoprotein D to nectin-1 exploits host cell adhesion. Nature Communications, 2011, 2(12): 577.
    [10] Di Giovine P, Settembre EC, Bhargava AK, Luftig MA, Lou H, Cohen GH, Eisenberg RJ, Krummenacher C, Carfi A. Structure of herpes simplex virus glycoprotein D bound to the human receptor nectin-1. PLoS Pathogens, 2011, 7(9): e1002277, doi: 10.1371/journal.ppat.1002277.
    [11] Wang KN, Kappel JD, Canders C, Davila WF, Sayre D, Chavez M, Pesnicak L, Cohen JI. A herpes simplex virus 2 glycoprotein D mutant generated by bacterial artificial chromosome mutagenesis is severely impaired for infecting neuronal cells and infects only Vero cells expressing exogenous HVEM. Journal of Virology, 2012, 86(23): 12891-12902.
    [12] Uchida H, Chan J, Shrivastava I, Reinhart B, Grandi P, Glorioso JC, Cohen JB. Novel mutations in gB and gH circumvent the requirement for known gD receptors in herpes simplex virus 1 entry and cell-to-cell spread. Journal of Virology, 2013, 87(3): 1430-1442.
    [13] Clarke RW, Drews A, Browne H, Klenerman D. A single gD glycoprotein can mediate infection by Herpes simplex virus. Journal of the American Chemical Society, 2013, 135(30): 11175-11180.
    [14] Chouljenko DV, Kim IJ, Chouljenko VN, Subramanian R, Walker JD, Kousoulas KG. Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress. Journal of Virology, 2012, 86(8): 4262-4270.
    [15] Johnson DC, Wisner TW, Wright CC. Herpes simplex virus glycoproteins gB and gD function in a redundant fashion to promote secondary envelopment. Journal of Virology, 2011, 85(10): 4910-4926.
    [16] Whittaker GR, Taylor LA, Elton DM, Giles LE, Bonass WA, Halliburton IW, Killington RA, Meredith DM. Glycoprotein 60 of equine herpesvirus type 1 is a homologue of herpes simplex virus glycoprotein D and plays a major role in penetration of cells. Journal of General Virology, 1992, 73(4): 801-809.
    [17] Wellington JE, Gooley AA, Love DN, Whalley JM. N-terminal sequence analysis of equine herpesvirus 1 glycoproteins D and B and evidence for internal cleavage of the gene 71 product. Journal of General Virology, 1996, 77(1): 75-82.
    [18] Flowers CC, Flowers SP, Jennings SR, O'Callaghan DJ. Synthesis and processing of equine herpesvirus 1 glycoprotein D. Virology, 1995, 208(1): 9-18.
    [19] 刘军. PACS-1在单纯疱疹病毒I型糖蛋白B定位于分泌高尔基体网络中的作用. 第四军医大学博士学位论文, 2001.
    相似文献
    引证文献
引用本文

王世民,张艳楠,胡月,苏艳,冉多良,包晓玮. 荧光蛋白标签对gD囊膜蛋白在BHK-21细胞亚细胞定位的影响[J]. 微生物学报, 2016, 56(7): 1194-1201

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-21
  • 最后修改日期:2016-01-05
  • 在线发布日期: 2016-06-28
文章二维码