Abstract:[Objective] We studied the diversity of endophytic bacterial communities in different species of halophytes growing in the same saline habitat, and analyzed the effect of rhizosphere soil physicochemical properties on endophytic bacterial communities. [Methods] PCR-based Roche FLX 454 pyrosequencing was applied to reveal the diversity of endophytic bacteria. [Results] Endophytic bacterial communities of the 16 species of halophytes mainly included 4 phyla, which were Proteobacteria, Tenericutes, Actinobacteria and Firmicutes. In terms of plant species classification, colonial differences existed among plant species at perspectives of composition of bacterial taxa; in the case of plant genus level, endophytic bacteria of different halophyte plant species but belonging to same plant genus exhibited similarity; as to plant family level, Actinobacteria and Proteobacteria comprised the main abundant phyla of the halophytes belonging to Chenopodiaceae; Proteobacteria comprised the main abundant phyla of the halophytes belonging to Zygophyllaceae; Tenericutes comprised the main abundant phyla of the halophytes belonging to Tamaricaceae; Proteobacteria, Fimicutes and Actinobacteria comprised the main abundant phyla of the halophytes belonging to Plumbaginaceae. The Cl- in rhizosphere soil has significant effect on endophytic bacterial community structure. Moreover, there is a strong correlation between bacterial community and the combination of Cl-, Mg2+ and total nitrogen. [Conclusion] Halophytes harbors diverse endophytic bacteria. In the same saline habitat, the distribution of endophytic bacteria showed host plant species-specific, and the Cl- in rhizosphere soil was one of the factors determined the endophytic bacterial community.