抗菌肽P7抑制大肠杆菌的非膜作用机制
作者:
基金项目:

国家自然科学基金(31460424)


Non-membrane mechanisms of antimicrobial peptide P7 against Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的] 研究抗菌肽P7抑制大肠杆菌的非膜作用机制。[方法] P7与溴化乙锭竞争结合大肠杆菌基因组DNA的荧光光谱,分析P7与DNA的结合方式;流式细胞术分析P7与大肠杆菌基因组DNA结合对细菌细胞周期的影响;采用磁珠富集和PCR扩增相结合的方法分析P7特异结合的DNA序列;通过实时荧光定量PCR分析P7对大肠杆菌DNA复制和SOS损伤修复基因表达的影响;核酸染料的荧光分析研究P7对大肠杆菌DNA和RNA合成的影响。[结果] P7以嵌插的方式作用于大肠杆菌基因组DNA碱基对并形成肽-DNA复合物,使溴化乙锭-DNA复合体系的荧光强度减弱。P7可以显著增加大肠杆菌细胞周期中S期细胞数目,抑制大肠杆菌DNA复制。P7特异性结合rnhA使该基因表达水平显著下调2.24倍。同时,在肽的影响下参与大肠杆菌DNA复制相关的ssbdnaGligBrnhA基因的表达水平显著下调(P<0.05),DNA损伤修复的recArecN基因显著上调(P<0.05)。P7可降低大肠杆菌DNA和RNA的合成。[结论] P7特异性地结合rnhA序列引起大肠杆菌DNA的损伤并抑制大肠杆菌的DNA复制。在P7的影响下,参与大肠杆菌DNA复制相关的基因的表达水平下调,DNA损伤修复基因显著上调,同时抑制大肠杆菌DNA和RNA的合成。

    Abstract:

    [Objective] The molecular mechanism of antimicrobial peptide P7 against Escherichia coli was studied.[Methods] The binding mode between P7 and DNA was analyzed through fluorescence spectroscopy of P7 binding with E. coli genome DNA. The effects of P7 on E. coli cell cycle were determined through flow cytometry. Magnetic beads coupled with peptide were ussed to enrich peptide DNA-binding fragments, and PCR methods were used to analyze specific DNA to which P7 bound with. The influence of P7 on the gene expression levels of DNA replication and SOS damage and repair was analyzed through quantitative real-time PCR. The effects of P7 on E. coli DNA and RNA synthesis were analyzed according to the fluorescence spectra of nuclear stains.[Results] P7 intercalated into the base pairs of E. coli genomic DNA and then formed peptide-DNA complexes. As a result, the fluorescence intensity of the EB-DNA complex decreased. P7 could significantly increase the number of E. coli cells in phase S. The effect of P7 on normal E. coli cell cycle could significantly inhibit the DNA replication of E. coli. The binding of P7 with rnhA down-regulated the gene expression level by 2.24 times. The gene expression levels of ssb, dnaG, ligB, and rnhA that participated in E. coli DNA replication significantly decreased, and the gene expression levels of recA and recN in DNA damage and repair were significantly up-regulated under the effect of P7. P7 reduced E. coli DNA and RNA synthesis.[Conclusion] P7 also bound with rnhA. This binding resulted in DNA damage and inhibition of DNA replication of E. coli. P7 down-regulated the gene expression level of DNA replication, and the gene expression levels of DNA damage and repair were significantly up regulated. P7 reduced DNA and RNA synthesis of E. coli.

    参考文献
    [1] Jenssen H,Hamill P,Hancock REW.Peptide antimicrobial agents.Clinical Microbiology Reviews,2006,19(3):491-511.
    [2] Peters BM,Shirtliff ME,Jabra-Rizk MA.Antimicrobial peptides:primeval molecules or future drugs? PLoS Pathogens,2010,6(10):e1001067.
    [3] Eiríksdóttir E,Konate K,Langel Ü,Divita G,Deshayes S.Secondary structure of cell-penetrating peptides controls membrane interaction and insertion.Biochimica et Biophysica Acta (BBA)-Biomembranes,2010,1798(6):1119-1128.
    [4] Morris MC,Deshayes S,Heitz F,Divita G.Cell-penetrating peptides:from molecular mechanisms to therapeutics.Biology of the Cell,2008,100(4):201-217.
    [5] Magzoub M,Gräslund A.Cell-penetrating peptides:small from inception to application.Quarterly Reviews of Biophysics,2004,37(2):147-195.
    [6] Madani F,Lindberg S,Langel Ü,Futaki S,Gräslund A.Mechanisms of cellular uptake of cell-penetrating peptides.Journal of Biophysics,2011,2011:414729.
    [7] Li LR,Shi YH,Le GW.Antibacterial activity and mechanisms of a new peptide derived from cell-penetrating peptide.Acta Microbiologica Sinica,2013,53(9):950-956.(in Chinese)李莉蓉,施用晖,乐国伟.来自穿膜肽的新肽的抗菌活性及抑菌机制.微生物学报,2013,53(9):950-956.
    [8] Park CB,Kim HS,Kim SC.Mechanism of action of the antimicrobial peptide buforin Ⅱ:BuforinⅡ kills microorganisms by penetrating the cell membrane and inhibiting cellular functions.Biochemical and Biophysical Research Communications,1998,244(1):253-257.
    [9] Yonezawa A,Kuwahara J,Fujii N,Sugiura Y.Binding of tachyplesin i to DNA revealed by footprinting analysis:significant contribution of secondary structure to DNA binding and implication for biological action.Biochemistry,1992,31(11):2998-3004.
    [10] Kragol G,Lovas S,Varadi G,Condie BA,Hoffmann R,Otvos Jr L.The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of Dnak and prevents chaperone-assisted protein folding.Biochemistry,2001,40(10):3016-3026.
    [11] Nishikata M.Kanehira T,Oh H,Tani H,Tazaki M,Kuboki Y.Salivary histatin as an inhibitor of a protease produced by the oral bacterium Bacteroides gingivalis.Biochemical and Biophysical Research Communications,1991,174(2):625-630.
    [12] Friedrich CL,Rozek A,Patrzykat A,Hancock REW.Structure and mechanism of action of an indolicidin peptide derivative with improved activity against gram-positive bacteria.The Journal of Biological Chemistry,2001,276(26):24015-24022.
    [13] Ulvatne H,Samuelsen Ø,Haukland HH,Krämer M,Vorland LH.Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis.FEMS Microbiology Letters,2004,237(2):377-384.
    [14] Miao JY,Zhou JL,Liu G,Chen FL,Chen YJ,Gao XY,Dixon W,Song MY,Xiao H,Cao Y.Membrane disruption and DNA binding of Staphylococcus aureus cell induced by a novel antimicrobial peptide produced by Lactobacillus paracasei subsp.tolerans FX-6.Food Control,2016,59:609-613.
    [15] Yi LH,Dang J,Zhang LH,Wu YB,Liu BF,Lü X.Purification,characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8.Food Control,2016,67:53-62.
    [16] Li LR,Shi YH,Cheserek MJ,Su GF,Le GW.Antibacterial activity and dual mechanisms of peptide analog derived from cell-penetrating peptide against Salmonella typhimurium and Streptococcus pyogenes.Applied Microbiology and Biotechnology,2013,97(4):1711-1723.
    [17] Steen HB,Boye E.Bacterial growth studied by flow cytometry.Cytometry,1980,1(1):32-36.
    [18] He JL,Furmanski P.Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA.Nature,1995,373(6516):721-724.
    [19] Wang HT,Wang Q,Xie MJ.Anti-bacterial mechanism of soybean isoflavone on Staphylococcus aureus.Scientia Agricultura Sinica,2009,42(7):2586-2591.(in Chinese)王海涛,王倩,谢明杰.大豆异黄酮对金黄色葡萄球菌的抑菌机制研究.中国农业科学,2009,42(7):2586-2591.
    [20] Pan LZ,Na J,Xing Z,Fang HJ,Wang GL.Inhibiting effect of melittin on pathogens of crops.Chinese Science Bulletin,2007,52(5):639-644.
    [21] Uyterhoeven ET,Butler CH,Ko D,Elmore DE.Investigating the nucleic acid interactions and antimicrobial mechanism of buforin Ⅱ.FEBS Letters,2008,582(12):1715-1718.
    [22] Pietiäinen M,François P,Hyyryläinen HL,Tangomo M,Sass V,Sahl HG,Schrenzel J,Kontinen VP.Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance.BMC Genomics,2009,10(1):429.
    [23] Hong RW,Shchepetov M,Weiser JN,Axelsen PH.Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A.Antimicrobial Agents and Chemotherapy,2003,47(1):1-6.
    [24] Subbalakshmi C,Sitaram N.Mechanism of antimicrobial action of indolicidin.FEMS Microbiology Letters,1998,160(1):91-96.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈旋,李莉蓉. 抗菌肽P7抑制大肠杆菌的非膜作用机制[J]. 微生物学报, 2016, 56(11): 1737-1745

复制
分享
文章指标
  • 点击次数:1095
  • 下载次数: 2083
  • HTML阅读次数: 773
  • 引用次数: 0
历史
  • 收稿日期:2016-02-05
  • 最后修改日期:2016-03-28
  • 在线发布日期: 2016-11-03
文章二维码