单室微生物电解池除镍途径分析及微生物群落动态特征
作者:
基金项目:

哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金(HCK201509)


Removal of Ni (II) and microbial dynamics in single-chamber microbial electrolysis cell
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 为探究UASB颗粒污泥启动的单室微生物电解池(Single-chamber microbial electrolysis cell,SMEC)对Ni(Ⅱ)的去除途径和SMEC中微生物群落的动态特征。[方法] 以乙酸钠为底物,采用单因子控制方法分析SMEC对Ni(Ⅱ)的去除途径和应用Illumina高通量测序技术解析SMEC启动过程中微生物群落的组成和结构动态学特征。[结果] 结果表明,SMEC对重金属的去除主要通过吸附和微生物作用。经培养驯化功能菌群发生变化。成熟单室微生物燃料电池(Single-chamber microbial fuel cell,SMFC)阳极生物膜菌群主要是Proteobacteria(变形菌门,91.42%)中的Geobacter sp.(地杆菌属,76.25%);阴极生物膜菌群主要是Bacteroidetes(拟杆菌门,47.99%)中的Niabella sp.(布鲁氏菌属,33.01%)和Proteobacteria(45.74%)中的Ochrobactrum sp.(苍白杆菌属,10.80%)。成熟SMFC改装成的SMEC在12.5 mg-Ni(Ⅱ)/L下,阳极生物膜菌群由单一优势菌Geobacter sp.转变为Geobacter sp.(41.56%)和Proteobacteria中的Azospirillum sp.(固氮螺菌属,5.97%);阴极生物膜菌群由Niabella sp.和Ochrobactrum sp.转变为Firmicutes(厚壁菌门,25.21%)中的Acetoanaerobium sp.(19.28%)、Proteobacteria(51.42%)中的Dokdonella sp.(16.48%)和Azospirillum sp.(9.49%)。[结论] 本研究表明,污泥微生物经SMFC和SMEC驯化过程及Ni(Ⅱ)的淘汰和选择,在电极上形成了稳定、高效产电与除镍菌群,优势菌群为Proteobacteria。

    Abstract:

    [Objective] Single-chamber microbial electrolysis cell (SMEC), inoculated by granular sludge from upflow anaerobic sludge bed, can remove Ni(Ⅱ). Therefore, it is of great significance to explore the role microbial community to remove Ni(Ⅱ) in SMEC.[Methods] With sodium acetate as substrate, single-factor control method and Illumina high-throughput sequencing were applied to analyze Ni(Ⅱ) removal, as well as microbial community structure and dynamic characteristics in SMEC.[Results] Adsorption and microbial functions were the major mechanisms for removing Ni(Ⅱ). In mature single-chamber microbial fuel cell (SMFC), Geobacter sp. of Proteobacteria (91.42%) was dominant on the anode with an abundance of 76.25% whereas Niabella sp. of Bacteroidetes (47.99%) was dominant on the cathode with an abundance of 33.01%, followed by Ochrobactrum sp. of Poribacteria (45.74%) accounting for 10.08%. In SMEC modified from mature SMFC with 12.5 mg-Ni(Ⅱ)/L, the dominant bacteria turned from single Geobacter sp. to Geobacter sp. (41.56%) and Azospirillum sp. (5.97%) on the anode; the dominant bacteria on the cathode turned from Niabella sp. and Ochrobactrum sp. to Acetoanaerobium sp. (19.28%), Dokdonella sp. (16.48%) and Azospirillum sp. (9.49%).[Conclusion] Microbial populations in raw sludge were selectively acclimated in the Ni(Ⅱ) removal process of SMEC, and effective microbial communities of electrogenesis and nickel removal were built on the electrode to promote the removal of Ni(Ⅱ) in SMEC.

    参考文献
    [1] Logan BE,Hamelers B,Rozendal R,Schröder U,Keller J,Freguia S,Aelterman P,Verstraete W,Rabaey K.Microbial fuel cells:methodology and technology.Environmental Science&Technology,2006,40(17):5181-5192.
    [2] Zhang YF,Angelidaki I.Microbial electrolysis cells turning to be versatile technology:recent advances and future challenges.Water Research,2014,56:11-25.
    [3] Lovley DR.Electromicrobiology.Annual Review of Microbiology,2012,66:391-409.
    [4] Modin O,Wang XF,Wu X,Rauch S,Fedje KK.Bioelectrochemical recovery of Cu,Pb,Cd,and Zn from dilute solutions.Journal of Hazardous Materials,2012,235/236:291-297.
    [5] Huang LP,Chai XL,Cheng SA,Chen GH.Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation.Chemical Engineering Journal,2011,166(2):652-661.
    [6] Qin BY,Luo HP,Liu GL,Zhang RD,Chen SS,Hou YP,Luo Y.Nickel ion removal from wastewater using the microbial electrolysis cell.Bioresource Technology,2012,121:458-461.
    [7] Luo HP,Qin BY,Liu GL,Zhang RD,Tang YB,Hou YP.Selective recovery of Cu2+ and Ni2+ from wastewater using bioelectrochemical system.Frontiers of Environmental Science&Engineering,2015,9(3):522-527.
    [8] Huang LP,Guo R,Jiang LJ,Quan X,Sun YL,Chen GH.Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells.Chemical Engineering Journal,2013,220:72-80.
    [9] Li Y,Wu YN,Puranik S,Lei Y,Vadas T,Li BK.Metals as electron acceptors in single-chamber microbial fuel cells.Journal of Power Sources,2014,269:430-439.
    [10] Lu L.Enhanced hydrogen production from biomass in microbial electrolysis cells and the environmental responses of anodophilic community structures.Doctor Dissertation of Harbin Institute of Technology,2012.(in Chinese)路璐.生物质微生物电解池强化产氢及阳极群落结构环境响应.哈尔滨工业大学博士学位论文,2012.
    [11] Qin JJ,Li RQ,Raes J,Arumugam M,Burgdorf KS,Manichanh C,Nielsen T,Pons N,Levenez F,Yamada T,Mende DR,Li JH,Xu JM,Li SC,Li DF,Cao JJ,Wang B,Liang HQ,Zheng HS,Xie YL,Tap J,Lepage P,Bertalan M,Batto JM,Hansen T,Le Paslier D,Linneberg A,Nielsen HB,Pelletier E,Renault P,Sicheritz-Ponten T,Turner K,Zhu HM,Yu C,Li ST,Jian M,Zhou Y,Li YR,Zhang XQ,Li SG,Qin N,Yang HM,Wang J,Brunak S,Doré J,Guarner F,Kristiansen K,Pedersen O,Parkhill J,Weissenbach J,Bork P,Ehrlich SD,Wang J.A human gut microbial gene catalogue established by metagenomic sequencing.Nature,2010,464(7285):59-65.
    [12] Yalçinkaya Y,Arica MY,Soysal L,Denizli A,Genç O,Bektaş S.Cadmium and mercury uptake by immobilized Pleurotus sapidus.Turkish Journal of Chemistry,2002,26(3):441-452.
    [13] Abourached C,Catal T,Liu H.Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production.Water Research,2014,51:228-233.
    [14] Rotaru AE,Shrestha PM,Liu FH,Markovaite B,Chen SS,Nevin KP,Lovley DR.Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.Applied and Environmental Microbiology,2014,80(15):4599-4605.
    [15] Methé BA,Nelson KE,Eisen JA,Paulsen IT,Nelson W,Heidelberg JF,Wu D,Wu M,Ward N,Beanan MJ,Dodson RJ,Madupu R,Brinkac LM,Daugherty SC,DeBoy RT,Durkin AS,Gwinn M,Kolonay JF,Sullivan SA,Haft DH,Selengut J,Davidsen TM,Zafar N,White O,Tran B,Romero C,Forberger HA,Weidman J,Khouri H,Feldblyum TV,Utterback TR,Van Aken SE,Lovley DR,Fraser CM.Genome of Geobacter sulfurreducens:metal reduction in subsurface environments.Science,2003,302(5652):1967-1969.
    [16] Chen SS,Rotaru AE,Liu FH,Philips J,Woodard TL,Nevin KP,Lovley DR.Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures.Bioresource Technology,2014,173:82-86.
    [17] Speers AM,Reguera G.Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.Applied and Environmental Microbiology,2012,78(2):437-444.
    [18] Embree M,Qiu Y,Shieu W,Nagarajan H,O'Neil R,Lovley D,Zengler K.The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism.Applied and Environmental Microbiology,2014,80(9):2918-2927.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵欣,吴忆宁,王岭,李伟明,靳敏,李帅. 单室微生物电解池除镍途径分析及微生物群落动态特征[J]. 微生物学报, 2016, 56(11): 1794-1801

复制
分享
文章指标
  • 点击次数:1423
  • 下载次数: 1867
  • HTML阅读次数: 971
  • 引用次数: 0
历史
  • 收稿日期:2016-03-21
  • 最后修改日期:2016-06-05
  • 在线发布日期: 2016-11-03
文章二维码