地中海富盐菌中非编码RNA的鉴定与分析
作者:
基金项目:

国家自然科学基金青年项目(31301071)


Identification of non-coding RNA in Haloferax mediterranei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]通过转录组高通量测序技术(即RNA-seq),结合生物信息学分析和分子生物学方法,在组学水平鉴定极端嗜盐菌中可能的非编码RNA(ncRNA)。[方法]将培养至对数中期的地中海富盐菌在不同盐浓度下处理30分钟,提取RNA,进行链特异的转录组测序和5'端区分的转录组测序,通过生物信息学分析在全基因组范围内鉴定ncRNA,预测其转录边界;然后通过Northern blot和环化RNA反转录聚合酶链式反应(CR-RT-PCR)对部分预测的ncRNA进行实验验证。[结果]比较两种RNA-seq技术在不同培养条件下的RNA测序结果和对转录单元的精细分析,共鉴定到105个高可信度的ncRNA,并发现4个在不同盐度下表达差异较大的ncRNA,通过Northern blot和CR-RT-PCR验证了incRNA1436和incRNA1903的表达情况、转录本、转录起始位点及终止位点等。[结论]首次在组学水平鉴定了地中海富盐菌中的ncRNA,不同盐浓度刺激下部分ncRNA的转录差异暗示其有可能参与地中海富盐菌对盐胁迫的适应,高可信度ncRNA的组学发现为今后全面开展嗜盐古菌ncRNA的功能机制研究提供了基础数据及重要的切入点。

    Abstract:

    [Objective] To identify non-coding RNAs in Haloferax mediterranei through high-throughput RNA sequencing, bioinformatics analysis and molecular techniques.[Methods] After H. mediterranei cells under log phase of growth were treated with different salt concentrations for 30 minutes, total RNA was extracted for the following strand-specific RNA sequencing and differential RNA sequencing. These RNA-seq data were used to identify the genome-wide ncRNAs and to predict the 5' and 3'-ends of the transcripts by bioinformatics analysis. A few selected ncRNAs were further confirmed by Northern blotting and Circularized RNA reverse transcription-PCR analysis.[Results] We identified 105 highly credible ncRNAs. Expression of four ncRNAs showed difference in different salt concentrations. We confirmed the expression, length of transcripts, transcription start and termination sites of incRNA1436 and incRNA1903 by Northern blotting and CR-RT-PCR.[Conclusion] We identified the ncRNAs of H. mediterranei in a genome-wide scale, including identification of a few ncRNAs involved in the responses of H. mediterranei to different salt concentrations. Our results have provided fundamental data and novel insights for future study of the function of ncRNA in haloarchaea.

    参考文献
    [1] Brantl S. Bacterial chromosome-encoded small regulatory RNAs. Future Microbiology, 2009, 4(1):85-103.
    [2] Liu CN, Bai BY, Skogerbø G, Cai L, Deng W, Zhang Y, Bu DB, Zhao Y, Chen RS. NONCODE:an integrated knowledge database of non-coding RNAs. Nucleic Acids Research, 2005, 33:D112-D115.
    [3] Wang Z, Gerstein M, Snyder M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics, 2009, 10(1):57-63.
    [4] Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nature Methods, 2010, 7(9):709-715.
    [5] Bischler T, Tan HS, Nieselt K, Sharma CM. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Methods, 2015, 86:89-101.
    [6] Fan B, Li L, Chao Y, Förstner K, Vogel J, Borriss R, Wu XQ. dRNA-Seq reveals genomewide TSSs and noncoding RNAs of plant beneficial rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One, 2015, 10(11):e0142002.
    [7] Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Hüttenhofer A. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7536-7541.
    [8] Wurtzel O, Sapra R, Chen F, Zhu YW, Simmons BA, Sorek R. A single-base resolution map of an archaeal transcriptome. Genome Research, 2010, 20(1):133-141.
    [9] Schattner P. Searching for RNA genes using base-composition statistics. Nucleic Acids Research, 2002, 30(9):2076-2082.
    [10] Jager D, Sharma CM, Thomsen J, Ehlers C, Vogel J, Schmitz RA. Deep sequencing analysis of the Methanosarcina mazei Go1 transcriptome in response to nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51):21878-21882.
    [11] Klein RJ, Misulovin Z, Eddy SR. Noncoding RNA genes identified in AT-rich hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7542-7547.
    [12] Fischer S, Benz J, Späth B, Jellen-Ritter A, Heyer R, Dörr M, Maier LK, Menzel-Hobeck C, Lehr M, Jantzer K, Babski J, Soppa J, Marchfelder A. Regulatory RNAs in Haloferax volcanii. Biochemical Society Transactions, 2011, 39(1):159-162.
    [13] Soppa J, Straub J, Brenneis M, Jellen-Ritter A, Heyer R, Fischer S, Granzow M, Voss B, Hess WR, Tjaden B, Marchfelder A. Small RNAs of the halophilic archaeon Haloferax volcanii. Biochemical Society Transactions, 2009, 37(1):133-136.
    [14] Heyer R, Dörr M, Jellen-Ritter A, Späth B, Babski J, Jaschinski K, Soppa J, Marchfelder A. High throughput sequencing reveals a plethora of small RNAs including tRNA derived fragments in Haloferax volcanii. RNA Biology, 2012, 9(7):1011-1018.
    [15] Lui L, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays in Biochemistry, 2013, 54:53-77.
    [16] Babski J, Maier LK, Heyer R, Jaschinski K, Prasse D, Jäger D, Randau L, Schmitz RA, Marchfelder A, Soppa J. Small regulatory RNAs in Archaea. RNA Biology, 2014, 11(5):484-493.
    [17] Li M, Liu HL, Han J, Liu JF, Wang R, Zhao DH, Zhou J, Xiang H. Characterization of CRISPR RNA biogenesis and Cas6 cleavage-mediated inhibition of a provirus in the haloarchaeon Haloferax mediterranei. Journal of Bacteriology, 2013, 195(4):867-875.
    [18] Han J, Zhang F, Hou J, Liu XQ, Li M, Liu HL, Cai L, Zhang B, Chen YP, Zhou J, Hu SN, Xiang H. Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. Journal of Bacteriology, 2012, 194(16):4463-4464.
    [19] Brenneis M, Hering O, Lange C, Soppa J. Experimental characterization of Cis-acting elements important for translation and transcription in halophilic archaea. PLoS Genetics, 2007, 3(12):e229.
    [20] Han J, Lu QH, Zhou LG, Zhou J, Xiang H. Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Applied and Environmental Microbiology, 2007, 73(19):6058-6065.
    [21] Sambrook J, Russell D W. Molecular Cloning:A Laboratory Manual. 3rd ed. New York:Cold Spring Harbor Laboratory Press, 2001.
    [22] Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods, 2012, 9(4):357-360.
    [23] Jorjani H, Zavolan M. TSSer:an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data. Bioinformatics, 2014, 30(7):971-974.
    [24] McClure R, Balasubramanian D, Sun Y, Bobrovskyy M, Sumby P, Genco CA, Vanderpool CK, Tjaden B. Computational analysis of bacterial RNA-Seq data. Nucleic Acids Research, 2013, 41(14):e140.
    [25] Kuhn J, Binder S. RT-PCR analysis of 5' to 3'-end-ligated mRNAs identifies the extremities of cox2 transcripts in pea mitochondria. Nucleic Acids Research, 2002, 30(2):439-446.
    [26] Liu CH, Fan C. De novo transcriptome assembly of floral buds of pineapple and identification of differentially expressed genes in response to ethephon induction. Frontiers in Plant Science, 2016, 7:203.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王磊,程飞跃,赵大贺,杨海波,向华. 地中海富盐菌中非编码RNA的鉴定与分析[J]. 微生物学报, 2017, 57(2): 220-228

复制
分享
文章指标
  • 点击次数:857
  • 下载次数: 1703
  • HTML阅读次数: 676
  • 引用次数: 0
历史
  • 收稿日期:2016-06-15
  • 最后修改日期:2016-07-15
  • 在线发布日期: 2017-01-19
文章二维码