转录调节因子σ38介导铜绿假单胞菌绿脓菌素合成代谢调控
作者:
基金项目:

山东省自然科学基金(ZR2011CL003);山东省高等学校科技计划项目(J14LK53)


Regulation of pyocyanin biosynthesis by transcriptional factor sigma38 in Pseudomonas aeruginosa PAO1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]为了进一步鉴定铜绿假单胞菌转录调控因子σ38对2个拷贝吩嗪合成基因簇(phzA1-G1phzA2-G2)的具体调控方式并推定介导绿脓菌素合成代谢的可能调控机制。[方法]根据铜绿假单胞菌基因组信息,利用同源重组原理构建rpoS基因缺失突变株ΔrpoS以及克隆全长rpoS基因作互补分析;再以单一吩嗪基因簇缺失突变株Δphz1和Δphz2为出发菌株,分别构建rpoS缺失突变株ΔrpoSphz1和rpoS插入突变株ΔrpoSphz2,测定并比较野生株及相关突变株的绿脓菌素合成量,初步推定σ38因子对2个不同吩嗪基因簇表达的调控方式。[结果]在GA培养基中,突变株ΔrpoS的绿脓菌素合成量比野生株显著增加;互补分析证实,σ38可使突变株ΔrpoS的绿脓菌素降低并接近野生株PAO1水平;与对照株Δphz1相比,突变株ΔrpoSphz1的绿脓菌素合成量因σ38因子缺失而显著减少;而与对照株Δphz2相比,突变株ΔrpoSphz2的绿脓菌素合成量因σ38因子缺失显著增加。[结论]转录调控因子σ38对铜绿假单胞菌绿脓菌素的合成代谢的确具一定的负调控作用;结合已报道的研究结果,初步推定:σ38因子通过负调控吩嗪基因簇phz1,正调控吩嗪基因簇phz2的表达实现对绿脓菌素合成代谢的调控。

    Abstract:

    Pyocyanin, an important virulence factor, is synthesized and secreted by Pseudomonas aeruginosa PAO1and plays a critical role in pathogen-host interaction during infection. Sigma3838, σS) is a central regulator for many virulence production in pathogens.[Objective] Our aim is to identify expression and regulation of two phenazine-producing operons mediated by the sigma38 factor in Pseudomonas aeruginosa PAO1.[Methods] We first cloned the flanking fragments of rpoS from the chromosomal DNA of P. aeruginosa PAO1 and constructed the deletion mutant ΔrpoS with the insertion of gentamycin resistance cassette (aacC1). Complementation of rpoS was then carried out after construction and introduction of pME10S (containing the whole rpoS region). Finally, we created the mutant ΔrpoSphz1 and ΔrpoSphz2, and measured pyocyanin production by these mutants in GA medium, using the parental strain Δphz1 and Δphz2 as controls.[Results] In GA medium, pyocyanin production by mutant ΔrpoS increased dramatically in comparison with the wild-type strain PAO1. Production of pyocyanin, however, was decreased to the level of the wild-type strain with complementation of the derivative ΔrpoS harboring pME10S. Mutant ΔrpoSphz2 produced much more pyocyanin than mutant Δphz2. Mutant ΔrpoSphz1, however, produced much less pyocyanin than mutant Δphz1.[Conclusion] By positively regulating the expression of phz2 and negatively regulating the phz1, sigma38 factor exerts negative modulation on pyocyanin biosynthesis in P. aeruginosa PAO1.

    参考文献
    [1] Kung VL, Khare S, Stehlik C, Bacon EM, Hughes AJ, Hauser AR. An rhs gene of Pseudomonas aeruginosa encodes a virulence protein that activates the inflammasome. Proceedings of the National Academy of Sciences of the Unite States of America, 2012, 109(4):1275-1280.
    [2] Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2004, 186(10):2936-2945.
    [3] Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. American Journal of Respiratory Cell and Molecular Biology, 2012, 47(6):738-745.
    [4] Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 2001, 183(21):6454-6465.
    [5] Potvin E, Sanschagrin F, Levesque RC. Sigma factors in Pseudomonas aeruginosa. FEMS Microbiology Review, 2008, 32(1):38-55.
    [6] Dong T, Schellhorn HE. Role of RpoS in virulence of pathogens. Infection and Immunity, 2010, 78(3):887-897.
    [7] Suh SJ, Silo-Suh L, Woods DE, Hassett DJ, West SE, Ohman DE. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. Journal of Bacteriology, 1999, 181(13):3890-3897.
    [8] Sambrook J, Frisch EF, Maniatis T. Molecular cloning:a laboratory manual. 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989.
    [9] Chieda Y, Iiyama K, Yasunaga-Aoki C, Lee JM, Kusakabe T, Shimizu S. Pathogenicity of gacA mutant of Pseudomonas aeruginosa PA01 in the silkworm, Bombyx mori. FEMS Microbiology Letters, 2005, 244(1):181-186.
    [10] Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences:application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene, 1998, 212(1):77-86.
    [11] Cui QN, Lv HN, Qi ZZ, Jiang B, Xiao B, Liu LD, Ge YH, Hu XM. Cross-regulation between the phz1 and phz2 operons maintain a balanced level of phenazine biosynthesis in Pseudomonas aeruginosa PAO1. PLoS One, 2016, 11(1):e0144447.
    [12] Schweizer HD. Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. BioTechniques, 1993, 15(5):831-834.
    [13] Heeb S, Itoh Y, Nishijyo T, Schnider U, Keel C, Wade J, Walsh U, O'Gara F, Haas D. Small, stable shuttle vectors based on the minimal pVS1 replicon for use in gram-negative, plant-associated bacteria. Molecular Plant-Microbe Interaction, 2000, 13(2):232-237.
    [14] Liang HH, Li LL, Dong ZL, Surette MG, Duan KM. The YebC family protein PA0964 negatively regulates the Pseudomonas aeruginosa quinolone signal system and pyocyanin production. Journal of Bacteriology, 2008, 190(18):6217-6227.
    [15] Zhou JF, Ge YH, Liu T, Cheng XH, Wang L, Gao XX. Effect of rpoS mutation on two gene clusters of phenazine in Psedomonas aeruginosa PAO1. Acta Microbiolgica Sinica, 2010, 50(3):411-417. (in Chinese)周金凤, 葛宜和, 刘婷, 程显好, 王磊, 高兴喜. rpoS基因插入突变对铜绿假单胞菌两个吩嗪合成基因簇的调控. 微生物学报, 2010, 50(3):411-417.
    [16] Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 2012, 76(1):46-65.
    [17] Whiteley M, Lee KM, Greenberg EP. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the Unite States of America, 1999, 96(24):13904-13909.
    [18] Lee JH, Lequette Y, Greenberg EP. Activity of purified QscR, a Pseudomonas aeruginosa orphan quorum-sensing transcription factor. Molecular Microbiology, 2006, 59(2):602-609.
    [19] Zhang Y, Cui QN, Zhao Z, Ming YF, Chi XY, Feng ZB, Cheng SW, Xie WH, Ge YH. Positive regulation in expression of the phenazine-producing operon phz2 mediated by Pip in Pseudomonas aeruginosa PAO1. Acta Microbiologica Sinica, 2013, 53(2):127-135. (in Chinese)张圆, 崔钦娜, 赵哲, 明永飞, 迟晓艳, 冯志彬, 程仕伟, 解卫海, 葛宜和. Pip介导铜绿假单胞菌吩嗪基因簇phz2的表达. 微生物学报, 2013, 53(2):127-135.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

缪静,迟晓艳,王艳华,冯志彬,薛文文,黄润,张颢译,田铃仟,张洪倩,翟俊杰,葛宜和. 转录调节因子σ38介导铜绿假单胞菌绿脓菌素合成代谢调控[J]. 微生物学报, 2017, 57(2): 229-239

复制
分享
文章指标
  • 点击次数:1254
  • 下载次数: 2928
  • HTML阅读次数: 787
  • 引用次数: 0
历史
  • 收稿日期:2016-06-15
  • 最后修改日期:2016-08-24
  • 在线发布日期: 2017-01-19
文章二维码