Abstract:Pyocyanin, an important virulence factor, is synthesized and secreted by Pseudomonas aeruginosa PAO1and plays a critical role in pathogen-host interaction during infection. Sigma38 (σ38, σS) is a central regulator for many virulence production in pathogens.[Objective] Our aim is to identify expression and regulation of two phenazine-producing operons mediated by the sigma38 factor in Pseudomonas aeruginosa PAO1.[Methods] We first cloned the flanking fragments of rpoS from the chromosomal DNA of P. aeruginosa PAO1 and constructed the deletion mutant ΔrpoS with the insertion of gentamycin resistance cassette (aacC1). Complementation of rpoS was then carried out after construction and introduction of pME10S (containing the whole rpoS region). Finally, we created the mutant ΔrpoSphz1 and ΔrpoSphz2, and measured pyocyanin production by these mutants in GA medium, using the parental strain Δphz1 and Δphz2 as controls.[Results] In GA medium, pyocyanin production by mutant ΔrpoS increased dramatically in comparison with the wild-type strain PAO1. Production of pyocyanin, however, was decreased to the level of the wild-type strain with complementation of the derivative ΔrpoS harboring pME10S. Mutant ΔrpoSphz2 produced much more pyocyanin than mutant Δphz2. Mutant ΔrpoSphz1, however, produced much less pyocyanin than mutant Δphz1.[Conclusion] By positively regulating the expression of phz2 and negatively regulating the phz1, sigma38 factor exerts negative modulation on pyocyanin biosynthesis in P. aeruginosa PAO1.