差异柠檬酸杆菌GXW-1β-葡萄糖苷酶的酶学性质及分子改造
作者:
基金项目:

国家自然科学基金(31360369,21366007);广西自然科学基金(2014GXNSFAA118097,2014GXNSFAA118078);广西主席基金[桂财教函(2015)284号]


Characterization and molecular modification of β-glucosidase from Citrobacter koser GXW-1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]筛选鉴定1株产β-葡萄糖苷酶的菌株,克隆、表达该菌株中的β-葡萄糖苷酶基因,研究重组酶的酶学性质并进行分子改造。[方法]在自然界中采集土样,筛选到1株具有β-葡萄糖苷酶活性的菌株,对野生菌进行16S rDNA鉴定,比对分析GenBank数据库中与野生菌同属的β-葡萄糖苷酶基因序列,设计简并引物PCR扩增基因保守区;设计引物扩增目的基因,以pQE30为表达载体构建重组质粒,转化至大肠杆菌中进行诱导表达;采用镍亲和层析对重组酶进行纯化,研究其酶学性质;采用易错PCR和定点随机突变相结合的方法对野生型β-葡萄糖苷酶进行分子改造。[结果]一个来自于差异柠檬酸杆菌GXW-1的β-葡萄糖苷酶基因被克隆并在大肠杆菌中表达。酶学性质研究结果表明该β-葡萄糖苷酶CBGL的最适温度为45℃,最适pH为6.0,Vmax值是(0.1704±0.0073)μmol/(mg·min),Kcat值为(0.2380±0.0102)/s。CBGL能水解α-pNPG、甜菊苷、黄豆苷和染料木苷。对野生酶进行分子改造,获得Vmax是野生酶2.54倍的突变体W147F。[结论]CBGL不仅具有β-1,4-糖苷键水解能力,还可能具有一定的α-糖苷键水解酶活性。此外,CBGL还能够水解天然底物甜菊苷、黄豆苷和染料木苷。这些特性表明该β-葡萄糖苷酶在理论研究及在工业中有一定的应用价值。

    Abstract:

    [Objective] The aim of this study was to characterize β-glucosidase from Citrobacter koser GXW-1 isolated from soil and to improve the enzyme by molecular modification. [Methods] A bacterial strain with β-glucosidase activity was screened from the soil around Wuming sugar mill in Guangxi by esculin-ferric ammonium citrate selecting plate. The 16S rDNA of the strain was obtained and analyzed. By searching GenBank database, the genes encoding β-glucosidase from the same genus Citrobacter were found. These sequences were aligned. Then, a gene encoding β-glucosidase was amplified by PCR. The recombinant plasmid pQE-cbgl was constructed. The recombinant protein was purified with Ni-NTA. The enzyme properties of the recombinant protein CBGL were studied in detail. At last, the wild enzyme CBGL was reformed by error-prone PCR and site-directed random mutagenesis. [Results] C. koser GXW-1 with β-glucosidase activity was isolated from the soil. A gene encoding β-glucosidase was cloned from the wild strain GXW-1. The properties of CBGL were identified. Its optimal pH and temperature were 6.0 and 45℃. Its Km and Vmax value were (11.280±1.073) mmol/L and (0.1704±0.0073) μmol/(mg·min), respectively. Its Ki values was (66.84±3.40) mmol/L. CBGL can hydrolyze α-pNPG, stevioside, daidzin and genistin. CBGL was modified by error-prone PCR and site directed random mutagenesis. A positive mutant W147F was obtained successfully. Its Vmax was 2.54 times that of the wild enzyme CBGL. [Conclusion] CBGL not only can hydrolyze β-glycosidic bond, but also can hydrolyze the α-glycosidic bond in α-pNPG. Furthermore, CBGL can hydrolyze stevioside, daidzin and genistin. These characteristics indicate that the β-glucosidase CBGL has important applications in theoretical research and in industry.

    参考文献
    [1] Liu Z, Zhu QX, Shi XA, Peng YH, Chen YN. Development in molecular modification of β-glucosidase in vitro. Journal of Fuzhou University (Natural Science Edition), 2015, 43(4):565-571. (in Chinese)刘震, 朱秋享, 石贤爱, 彭永辉, 陈荫楠. β-葡萄糖苷酶体外分子改造研究进展. 福州大学学报(自然科学版), 2015, 43(4):565-571.
    [2] Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R. Hemicelluloses for fuel ethanol:a review. Bioresource Technology, 2010, 101(13):4775-4800.
    [3] Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, Mcmillan JD, Sheehan J, Wyman CE. How biotech can transform biofuels. Nature Biotechnology, 2008, 26(2):169-172.
    [4] Su EZ, Xia T, Gao LP, Dai QY, Zhang ZZ. Immobilization of β-glucosidase and its aroma-increasing effect on tea beverage. Food and Bioproducts Processing, 2010, 88(2/3):83-89.
    [5] Du LQ, Wang ZL, Zhao YL, Huang JQ, Pang H, Wei YT, Lin LH, Huang RB. A β-glucosidase from Novosphingobium sp. GX9 with high catalytic efficiency toward isoflavonoid glycoside hydrolysis and (+)-catechin transglycosylation. Applied Microbiology and Biotechnology, 2014, 98(16):7069-7079.
    [6] Wang ZL, Wang JP, Jiang MH, Wei YT, Pang H, Wei H, Huang RB, Du LQ. Selective production of rubusoside from stevioside by using the sophorose activity of β-glucosidase from Streptomyces sp. GXT6. Applied Microbiology and Biotechnology, 2015, 99(22):9663-9674.
    [7] Yang SQ, Hua CW, Yan QJ, Li YN, Jiang ZQ. Biochemical properties of a novel glycoside hydrolase family 1β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydrate Polymers, 2013, 92(1):784-791.
    [8] Mallek-Fakhfakh H, Belghith H. Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides. Carbohydrate Research, 2016, 419:41-50.
    [9] Uchiyama T, Yaoi K, Miyazaki K. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome. Frontiers Microbiology, 2015, 6:548.
    [10] Medlin L, Elwood HJ, Stickel S, Sogin ML. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 1988, 71(2):491-499.
    [11] Bradford BM. A rapid and sensitive method for the quantifi-cation of microgram quantities of proteins utilizing the principles of protein dye binding. Analytical Biochemistry, 1976, 72:248-254.
    [12] Pan LH, Luo JP. Advance in research and application of β-D-glucosidase. Food Science, 2006, 27(12):803-807. (in Chinese)潘利华, 罗建平. β-葡萄糖苷酶的研究及应用进展. 食品科学, 2006, 27(12):803-807.
    [13] Yang XZ, Ma R, Shi PJ, Huang HQ, Bai YG, Wang YR, Yang PL, Fan YL, Yao B. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. PLoS One, 2014, 9(9):e106785.
    [14] Kakkar T, Boxenbaum H, Mayersohn M. Estimation of Ki in a competitive enzyme-inhibition model:comparisons among three methods of data analysis. Drug Metabolism and Disposition, 1999, 27(6):756-762.
    [15] de Giuseppe PO, de Arruda Campos Brasil Souza T, Souza FHM, Zanphorlin LM, Machado CB, Ward RJ, Jorge JA, dos Prazeres Melo Furriel R, Murakami MT. Structural basis for glucose tolerance in GH1β-glucosidases. Acta Crystallographica Section D, 2014, 70(6):1631-1639.
    [16] Huo YL. Cloning, expression, characterization and molecular modification of β-glucosidase from Paenibacillus cookii GX-4. Guangxi University Master Degree Thesis, 2013. (in Chinese)霍云龙. Paenibacillus cookii GX-4的β-葡萄糖苷酶基因的克隆、表达、酶学性质研究与分子改造. 广西大学硕士学位论文, 2013.
    [17] Justo PI, Corrêa JM, Maller A, Kadowaki MK, da Conceição-Silva JL, Gandra RF, de Cássia Garcia Simão R. Analysis of the xynB5 gene encoding a multifunctional GH3-BglX β-glucosidase-β-xylosidase-α-arabinosidase member in Caulobacter crescentus. Antonie Van Leeuwenhoek, 2015, 108(4):993-1007.
    [18] Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y. Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Applied Microbiology and Biotechnology, 2009, 83(4):649-657.
    [19] Okamoto K, Nakano H, Yatake T, Kiso T, Kitahata S. Purification and some properties of a β-glucosidase from Flavobacterium johnsonae. Bioscience Biotechnology & Biochemistry, 2000, 64(2):333-340.
    [20] Ko JA, Kim YM, Ryu YB, Jeong HJ, Park TS, Park SJ, Wee YJ, Kim JS, Kim D, Lee WS. Mass production of rubusoside using a novel stevioside-specific β-glucosidase from Aspergillus aculeatus. Journal of Agricultural and Food Chemistry, 2012, 60(24):6210-6216.
    [21] Ko JA, Ryu YB, Kwon HJ, Jeong HJ, Park SJ, Kim CY, Wee YJ, Kim D, Lee WS, Kim YM. Characterization of a novel steviol-producing β-glucosidase from Penicillium decumbens and optimal production of the steviol. Applied Microbiology and Biotechnology, 2013, 97(18):8151-8161.
    [22] Lamartiniere CA. Protection against breast cancer with genistein:a component of soy. The American Journal of Clinical Nutrition, 2000, 71(S6):1705S-1707S.
    [23] Otieno DO, Shah NP. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous β-glucosidases. Journal of Applied Microbiology, 2007, 103(3):601-612.
    [24] McAndrew RP, Park JI, Heins RA, Reindl W, Friedland GD, D'haeseleer P, Northen T, Sale KL, Simmons BA, Adams PD. From soil to structure, a novel dimeric β-glucosidase belonging to glycoside hydrolase family 3 isolated from compost using metagenomic analysis. The Journal of Biological Chemistry, 2013, 288(21):14985-14992.
    [25] Zhao JQ, Guo C, Tian CG, Ma YH. Heterologous expression and characterization of a GH3 beta-glucosidase from Thermophilic Fungi myceliophthora thermophila in Pichia pastoris. Applied Biochemistry and Biotechnology, 2015, 177(2):511-527.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江民华,林厚民,尹金阳,王子龙,庞浩,黄日波,杜丽琴. 差异柠檬酸杆菌GXW-1β-葡萄糖苷酶的酶学性质及分子改造[J]. 微生物学报, 2017, 57(3): 363-374

复制
分享
文章指标
  • 点击次数:889
  • 下载次数: 1701
  • HTML阅读次数: 739
  • 引用次数: 0
历史
  • 收稿日期:2016-06-21
  • 最后修改日期:2016-11-02
  • 在线发布日期: 2017-03-31
文章二维码