内生菌KM-1-2全基因组ORFs信号肽和分泌蛋白预测及功能分析
作者:
基金项目:

国家自然科学基金(31101476,31171796);陕西省科学技术研究发展计划(2013K01-45);杨凌示范区科技计划(2014NY-41)


Genome-wide prediction and analysis of the secretory proteins and ORFs signal peptide of ginkgo endophyte KM-1-2
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]内生菌普遍存在于植物中,与宿主在长期的进化中形成了互利共生的关系。目前对内生菌和植物之间的互作机制研究较少,为深入了解银杏叶内生菌KM-1-2与寄主植物作用机制,本研究对其分泌蛋白进行预测,并明确其特征。[方法]组合使用信号肽分析软件SignalP,跨膜螺旋结构分析软件TMHMM 2.0和Phobius,蛋白质细胞定位软件PSORT,亚细胞定位软件TargetP和GPI锚定位点分析软件big-PI Predictor,预测KM-1-2基因组范围内所有分泌蛋白,定义为分泌组。[结果]KM-1-2全基因组5299条蛋白序列中发现271个具有典型信号肽的分泌蛋白,占全基因组的2.4%;编码这些蛋白的ORF最短为61 bp,最大为2105 bp,平均为373 bp;引导它们的信号肽长度分布在15-37 aa之间,平均为24 aa。信号肽中出现频率最高的氨基酸依次为丙氨酸、亮氨酸和缬氨酸,信号肽切割类型多属于A-X-A型,即SPI切割类型。共66个蛋白质有功能描述,其中包括26个酶类。这些酶主要包括各种糖苷水解酶、酯酶、蛋白酶、碳氧裂解酶等。[结论]通过上述生物信息学分析方法有效实现了银杏叶内生菌KM-1-2分泌蛋白的预测,这些分泌蛋白功能涉及较多的酶类以及其他未知功能,为进一步研究内生菌和植物的互作提供了基础。

    Abstract:

    [Objective] Endophytes are widespread in plants and build long-term mutually beneficial symbiotic relationship with the host. However, the mechanism of their interactions with the host needs further study. To explore the mechanism of endophytic bacterium ginkgo endophyte KM-1-2, we managed to forecast its secretory proteins based on its genome and explicit characteristics.[Methods] Signal peptide analysis software SignalP, transmembrane helical structure analysis software TMHMM and Phobius, cells position software PSORT, subcellar localization software TargetP and GPI anchor site analysis software big-PI Predictor were used to predict the scope of all secreted proteins, which were defined as secretome.[Results] Altogether 128 typical signal peptide secretory proteins were screened out of 5299 protein sequences in KM-1-2 genome, accounting for 2.4% of the whole genome. The shortest ORF encoding these proteins is 61 bp, the longest one is 2105 bp and the average is 373 bp. The length of the signal peptide guiding secretory protein was distributed between 15 to 37 aa, with the average length of 24 aa. Amino acid with the highest present frequency of signal peptide in proper order is alanine, leucine and valine. The type of signal peptide cleavage belongs to A-X-A which named SPI cleavage type. Among the total secretory proteins 66 pieces have functional description and 26 pieces were enzymes. These enzymes mainly include glycoside hydrolase, esterase transferase, REDOX enzyme and carbon oxygen lyase.[Conclusion] The predicted secretory proteins of Streptomyces lavendulae KM-1-2 were achieved through bioinformatics analysis. These secretory proteins involved some enzymes and other unknown functions. This result laid the foundation for further study between endophyte and host.

    参考文献
    [1] Von Heijne G. Life and death of a signal peptide. Nature, 1998, 396(6707):111-113.
    [2] Han CZ. Prediction for secreted proteins from Colletotrichum graminicola genome. Biotechnology, 2014, 24(2):36-41. (in Chinese)韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白. 生物技术, 2014, 24(2):36-41.
    [3] Yan SM, Wu G. Signal peptide of cellulase. Applied Microbiology and Biotechnology, 2014, 98(12):5329-5362.
    [4] Zhang Y, Yang J, Liu L, Su Y, Xu L, Zhu YY, Li CY. Analysis of secretary proteins in the genome of the plant pathogenic fungus Botrytis Cinerea//Li DL, Liu YD, Chen YY. Computer and Computing Technologies in Agriculture IV:IFIP Advances in Information and Communication Technology. Berlin Heidelberg:Springer, 2010, 344:227-237.
    [5] Zhang SW, Zhang TH, Zhang JN, Huang YF. Prediction of signal peptide cleavage sites with subsite-coupled and template matching fusion algorithm. Molecular Informatics, 2014, 33(3):230-239.
    [6] Ng SYM, VanDyke DJ, Chaban B, Wu J, Nosaka Y, Aizawa SI, Jarrell KF. Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD. Journal of Bacteriology, 2009, 191(21):6732-6740.
    [7] Tjalsma H, Bolhuis A, Jongbloed JDH, Bron S, Van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 2000, 64(3):515-547.
    [8] Joly DL, Feau N, Tanguay P, Hamelin RC. Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.). BMC Genomics, 2010, 11:422.
    [9] Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VGH. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics, 2009, 10:425.
    [10] Peng Z, Liang W, Liu WJ, Xu ZF, Tan C, Wu B, Zhou R, Chen HC. Prediction and analysis of secreted proteins encoding genes in genome of Pasteurella Multocida HN06. Progress in Veterinary Medicine, 2015, 36(12):6-10. (in Chinese)彭忠, 梁婉, 刘文静, 徐卓菲, 谭臣, 吴斌, 周锐, 陈焕春. 多杀性巴氏杆菌HN06基因组分泌蛋白的预测与分析. 动物医学进展, 2015, 36(12):6-10.
    [11] Pan H, Gao TY, Wu MD, Yang L, Zhang J, Li GQ. Screening and functional prediction of type Ⅱ secretory proteins in Acidovorax citrulli AAC00-1. Journal of Huazhong Agricultural University, 2015, 34(3):27-35. (in Chinese)潘宏, 高天一, 吴明德, 杨龙, 张静, 李国庆. 西瓜果斑病菌T2SS分泌蛋白的筛选和功能预测. 华中农业大学学报, 2015, 34(3):27-35.
    [12] Xiao WC, Fan HY, Bai TT, Wang W, Li HP. Prediction and analysis of the signal peptide and secreted proteins in soft rot bacteria XJ8-3-3 genome ORFs of banana. Journal of Fruit Trees, 2014, 31(6):1057-1064. (in Chinese)肖文超, 范会云, 白亭亭, 王婉, 李华平. 香蕉细菌性软腐病菌XJ8-3-3基因组中ORFs的信号肽及分泌蛋白功能预测分析. 果树学报, 2014, 31(6):1057-1064.
    [13] Gao JX, Gao SG, Li YQ, Cheng J. Genome-wide prediction and analysis of the classical secreted proteins of Curvularia lunata. Journal of Plant Protection, 2015, 42(6):869-876. (in Chinese)高金欣, 高士刚, 李雅乾, 陈捷. 玉米弯孢叶斑病菌全基因组分泌蛋白的预测与分析. 植物保护学报, 2015, 42(6):869-876.
    [14] Tian L, Chen JY, Chen XY, Wang JN, Dai XF. Prediction and analysis of Verticillium dahliae VdLs.17 secretome. Scientia Agricultura Sinica, 2011, 44(15):3142-3153. (in Chinese)田李, 陈捷胤, 陈相永, 汪佳妮, 戴小枫. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析. 中国农业科学, 2011, 44(15):3142-3153.
    [15] Zhang W, Pan W, Ma JT, Guo T. Genome-wide prediction and analysis of the non-classical secreted proteins of Rhizobium etli CFN42. Journal of Dali University, 2015, 14(6):45-48. (in Chinese)张武, 潘伟, 马金田, 郭涛. 菜豆根瘤菌CFN42全基因组非经典分泌蛋白的预测与分析. 大理学院学报, 2015, 14(6):45-48.
    [16] Wang HL, Ge WQ, Guo R, Suo YP, Cheng FS. Prediction and analysis of secretome proteins in Botrytis cinerea. Journal of Qingdao Agricultural University (Natural Science), 2015, 32(3):174-179. (in Chinese)王海霖, 葛文谦, 郭瑞, 索一平, 程凡升. 葡萄灰霉病菌胞外分泌蛋白质组的功能预测分析. 青岛农业大学学报(自然科学版), 2015, 32(3):174-179.
    [17] Petersen TN, Brunak S, Von Heijne G, Nielsen H. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nature Methods, 2011, 8(10):785-786.
    [18] Emanuelsson O, Brunak S, Von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols, 2007, 2(4):953-971.
    [19] Melhem H, Min XJ, Butler G. The impact of SignalP 4.0 on the prediction of secreted proteins//Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. Singapore:IEEE, 2013:16-22.
    [20] Mak MW, Wang W, Kung SY. Fusion of conditional random field and signalP for protein cleavage site prediction[C]//Proceedings of 2009 APSIPA Summit and Conference. Sapporo, Japan:APSIPA, 2009:716-721.
    [21] Chen YJ, Yu P, Luo JC, Jiang Y. Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mammalian Genome, 2003, 14(12):859-865.
    [22] Xu C, Chen H, Gleason ML, Xu JR, Liu HQ, Zhang R, Sun GY. Peltaster fructicola genome reveals evolution from an invasive phytopathogen to an ectophytic parasite. Scientific Reports, 2016, 6:22926.
    [23] Nakai K, Horton P. PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends in Biochemical Sciences, 1999, 24(1):34-35.
    [24] Jaramillo VDA, Sukno SA, Thon MR. Identification of horizontally transferred genes in the genus Colletotrichum, reveals a steady tempo of bacterial to fungal gene transfer. BMC Genomics, 2015, 16:2.
    [25] Klee EW, Ellis LBM. Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics, 2005, 6:256.
    [26] Emanuelsson O, Nielsen H, Brunak S, Von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. Journal of Molecular Biology, 2000, 300(4):1005-1016.
    [27] Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 2005, 21(18):3674-3676.
    [28] Conesa A, Götz S. Blast2GO:a comprehensive suite for functional analysis in plant genomics. International Journal of Plant Genomics, 2008, 2008:619832.
    [29] Tang W, Yan M. Prediction and analysis of the secreteomic in Trichoderma reesei. Acta Microbiologica Sinica, 2008, 48(4):473-479. (in Chinese)唐雯, 严明. 里氏木霉(Trichoderma reesei)分泌组的预测及分析. 微生物学报, 2008, 48(4):473-479.
    [30] Liu YT, Li ZY, Zhu YY, Li CY, Li YZ. Analysis of the coding region for signal peptide-containing proteins in Pseudomonas syringae pv. tomato Genome. Hereditas (Beijing), 2005, 27(6):959-964. (in Chinese)刘雅婷, 李正跃, 朱有勇, 李成云, 李永忠. 植物病原细菌Pseudomonas syringae pv. tomato基因组中的信号肽分析. 遗传, 2005, 27(6):959-964.
    [31] Huang JL, Wu JZ, Xiao CG, Li CJ, Wang GX. Analysis of signal peptides of the secreted proteins in Ralstonia solanacearum GMI1000. Hereditas (Beijing), 2007, 29(11):1409-1416. (in Chinese)黄俊丽, 吴金钟, 肖崇刚, 李常军, 王贵学. 植物病原细菌Ralstonia solanacearum GMI1000中分泌蛋白信号肽分析. 遗传, 2007, 29(11):1409-1416.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕伟强,刘聪,黄丽丽,颜霞. 内生菌KM-1-2全基因组ORFs信号肽和分泌蛋白预测及功能分析[J]. 微生物学报, 2017, 57(3): 411-421

复制
分享
文章指标
  • 点击次数:877
  • 下载次数: 2414
  • HTML阅读次数: 1324
  • 引用次数: 0
历史
  • 收稿日期:2016-08-03
  • 最后修改日期:2016-09-28
  • 在线发布日期: 2017-03-31
文章二维码