操纵茶树类黄酮3'-羟基化酶生物合成B环-3',4'-二羟基黄酮类化合物
作者:
基金项目:

国家现代农业产业技术体系(CARS-23)


Engineering of a flavonoid 3'-hydroxylase from tea plant (Camellia sinensis) for biosynthesis of B-3',4'-dihydroxylated flavones
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]操纵茶树类黄酮3'-羟基化酶,生物合成B环-3',4'-二羟基黄酮类化合物圣草酚、二氢槲皮素和槲皮素。[方法]构建了4个茶树类黄酮3'-羟基化酶基因(CsF3'H)和拟南芥的P450还原酶基因(ATR)融合表达质粒:SUMO-CsF3'H[7-517]::ATR1[49-688]3 AA、SUMO-CsF3'H[28-517]::ATR1[49-688]3 AA、SUMO-CsF3'H[7-517]::ATR2[75-711]3 AA和SUMO-CsF3'H[28-517]::ATR2[75-711]3 AA,分别转化大肠杆菌菌株TOP10、DH5α和BL21,获得12个转化菌株S1-S12;构建了茶树类黄酮3'-羟基化酶基因CsF3'H表达质粒pYES-Dest52-CsF3'H,转化酵母菌株WAT11,得到转化菌株S13;构建了茶树类黄酮3'-羟基化酶基因CsF3'H表达质粒pES-URA-CsF3'H,及茶树黄烷酮3-羟基化酶基因CsF3H与拟南芥黄酮醇合成酶基因AtFLS的融合表达质粒pES-HIS-CsF3H::AtFLS 9AA,二者共转化酵母菌株WAT11,获得转化菌株S14。[结果]转化SUMO-CsF3'H[28-517]::ATR1[49-688]3 AA质粒的TOP10菌株S6在25℃条件下发酵,转化效率最高,能将1000 μmol/L柚皮素、二氢山奈酚和山奈酚,分别转化生成287.93 μmol/L圣草酚、131.76 μmol/L二氢槲皮素和188.62 μmol/L槲皮素。发酵菌株S13能分别将1000 μmol/L柚皮素、二氢山奈酚和山奈酚,最多能转化生成734.32 μmol/L圣草酚、446.07 μmol/L二氢槲皮素和594.64 μmol/L槲皮素。喂食S14发酵菌株5 mmol/L的底物柚皮素,在发酵36-48 h中,最多能生成1412.16 μmol/L圣草酚、490.25 μmol/L山奈酚、445.75 μmol/L槲皮素、66.75 μmol/L二氢槲皮素和73.50 μmol/L二氢山奈酚。[结论]本研究首次将茶树类黄酮3'-羟基化酶基因应用于B环-3',4'-二羟基黄酮类化合物圣草酚、二氢槲皮素和槲皮素的生物合成。

    Abstract:

    [Objective] A flavonoid 3'-hydroxylase from tea plant was engineered to synthesize B-3',4'-dihydroxylated flavones such as eriodictyol, dihydroquercetin and quercetin. [Methods] Four articifical P450 constructs harboring both flavonoid 3'-hydroxylase gene from Camellia sinensis (CsF3'H) and P450 reductase gene from Arabidopsis thaliana (ATR1 or ATR2) were introduced into Escherichia coli strains TOP10, DH5α and BL21, resultantly engineering strains S1 to S12. The plasmid pYES-Dest52-CsF3'H harboring CsF3'H gene was introduced into yeast Saccharomyces cerevisiae WAT11 designated as strain S13. The plasmid pES-HIS-CsF3H::AtFLS 9 AA was constructed through fusing flavanone 3-hydroxylase gene from Camellia sinensis (CsF3H) and flavonol synthase gene from Arabidopsis thaliana (AtFLS). Plasmid pES-URA-CsF3'H and pES-HIS-CsF3H::AtFLS 9 AA were then co-introduced into yeast S. cerevisiae WAT11 designated as strain S14. [Results] Strain S6 generated highest bioconversion efficiency at 25℃ among all E. coli strains during 24 h fernentation. Supplemented with 1000 μmol/L naringenin, dihydrokaempferol and kaempferol, the maximum amounts of eriodictyol, dihydroquercetin and quercetin produced by strain S13 were 734.32 μmol/L, 446.07 μmol/L and 594.64 μmol/L respectively. Supplemented with 5 mmol/L naringenin, the maximum amounts of eriodictyol, kaempferol, quercetin, dihydroquercetin and dihydrokaempferol produced by strain S14 were 1412.16 μmol/L, 490.25 μmol/L, 445.75 μmol/L, 66.75 μmol/L and 73.50 μmol/L during 36-48 h fermentaion respectively. [Conclusion] CsF3'H was engineered for biosynthesis of B-3',4'-dihydroxylated flavone.

    参考文献
    [1] Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126(2):485-493.
    [2] Kumar S, Pandey AK. Chemistry and biological activities of flavonoids:an overview. The Scientific World Journal, 2013, 2013:162750.
    [3] Kumar S, Gupta A, Pandey AK. Calotropis procera root extract has the capability to combat free radical mediated damage. ISRN Pharmacology, 2013, 2013:691372.
    [4] Ross JA, Kasum CM. Dietary flavonoids:bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 2003, 22:19-34.
    [5] Peterson J, Dwyer J. Flavonoids:dietary occurrence and biochemical activity. Nutrition Research, 1998, 18(12):1995-2018.
    [6] Wang YC, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms. Applied Microbiology and Biotechnology, 2011, 91(4):949-956.
    [7] Wang AM, Zhang FK, Huang LF, Yin XP, Li HF, Wang QY, Zeng ZW, Xie T. New progress in biocatalysis and biotransformation of flavonoids. Journal of Medicinal Plants Research, 2010, 4(10):847-856.
    [8] Trantas EA, Koffas MA, Xu P, Ververidis F. When plants produce not enough or at all:metabolic engineering of flavonoids in microbial hosts. Frontiers in Plant Science, 2015, 6:7.
    [9] Kumar S, Mishra A, Pandey AK. Antioxidant mediated protective effect of Parthenium hysterophorus against oxidative damage using in vitro models. BMC Complementary and Alternative Medicine, 2013, 13:120.
    [10] Kumar S, Pandey A K. Phenolic content, reducing power and membrane protective activities of Solanum xanthocarpum root extracts. International Journal of Plant Research, 2013, 26(1):301-307.
    [11] Wang YS, Xu YJ, Gao LP, Yu O, Wang XZ, He XJ, Jiang XL, Liu YJ, Xia T. Functional analysis of flavonoid 3', 5'-hydroxylase from tea plant (Camellia sinensis):critical role in the accumulation of catechins. BMC Plant Biology, 2014, 14:347.
    [12] Olsen KM, Hehn A, Jugdé H, Slimestad R, Larbat R, Bourgaud F, Lillo C. Identification and characterisation of CYP75A31, a new flavonoid 3'5'-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biology, 2010, 10:21.
    [13] Brugliera F, Barri-Rewell G, Holton TA, Mason JG. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. The Plant Journal, 1999, 19(4):441-451.
    [14] Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological Chemistry, 2000, 381(8):749-753.
    [15] Zhou TS, Zhou R, Yu YB, Xiao Y, Li DH, Xiao B, Yu O, Yang YJ. Cloning and characterization of a flavonoid 3'-hydroxylase gene from tea plant (Camellia sinensis). International Journal of Molecular Sciences, 2016, 17(2):261.
    [16] 宛晓春. 茶叶生物化学. 第3版. 北京:中国农业出版社, 2003:9-10.
    [17] Leonard E, Yan YJ, Koffas MAG. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metabolic Engineering, 2006, 8(2):172-181.
    [18] Pompon D, Louerat B, Bronine A, Urban P. Yeast expression of animal and plant P450s in optimized redox environments. Methods in Enzymology, 1996, 272:51-64.
    [19] Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS. Artemisia annua L. (Asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters, 2006, 580(5):1411-1416.
    [20] Kim DH, Kim BG, Jung NR, Ahn JH. Production of genistein from naringenin using escherichia coli containing isoflavone synthase-cytochrome P450 reductase fusion protein. Journal of Microbiology and Biotechnology, 2009, 19(12):1612-1616.
    [21] Draths KM, Knop DR, Frost JW. Shikimic acid and quinic acid:replacing isolation from plant sources with recombinant microbial biocatalysis. Journal of the American Chemical Society, 1999, 121(7):1603-1604.
    [22] Huang QL, Roessner CA, Croteau R, Scott AI. Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorganic & Medicinal Chemistry, 2001, 9(9):2237-2242.
    [23] Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7):796-802.
    [24] Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science, 2001, 291(5509):1790-1792.
    [25] Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5):612-616.
    [26] Chang MCY, Keasling JD. Production of isoprenoid pharmaceuticals by engineered microbes. Nature Chemical Biology, 2006, 2(12):674-681.
    [27] Sevrioukova IF, Li HY, Zhang H, Peterson JA, Poulos TL. Structure of a cytochrome P450-redox partner electron-transfer complex. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5):1863-1868.
    [28] Barnes HJ, Arlotto MP, Waterman MR. Expression and enzymatic activity of recombinant cytochrome P45017α-hydroxylase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(13):5597-5601.
    [29] Williams PA, Cosme J, Sridhar V, Johnson EF, McRee DE. Microsomal cytochrome P4502C5:comparison to microbial P450s and unique features. Journal of Inorganic Biochemistry, 2000, 81(3):183-190.
    [30] Leonard E, Koffas MAG. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Applied and Environmental Microbiology, 2007, 73(22):7246-7251.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周天山,余有本,肖斌,鮑露,高岳芳. 操纵茶树类黄酮3'-羟基化酶生物合成B环-3',4'-二羟基黄酮类化合物[J]. 微生物学报, 2017, 57(3): 447-458

复制
分享
文章指标
  • 点击次数:831
  • 下载次数: 1814
  • HTML阅读次数: 922
  • 引用次数: 0
历史
  • 收稿日期:2016-08-19
  • 最后修改日期:2016-12-01
  • 在线发布日期: 2017-04-11
文章二维码