纳米银的抗菌特性及对多重耐药菌株的抗菌作用
作者:
基金项目:

中央高校基本业务费专项资金(XDJK2016E105)


Antibacterial activity of silver nanoparticles against multiple drug resistant strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]利用革兰氏阴性细菌、革兰氏阳性细菌和真菌的模式菌株分析纳米银的抗菌特性,并评价纳米银对多重耐药菌株的抗菌作用。[方法]利用生物法合成的纳米银,以微量肉汤法测定3种标准菌株的最小抑菌浓度(MIC)和最小杀菌浓度(MBC),并计算MBC/MIC比值。用系列浓度的纳米银处理3株标准菌株后经平板计数法绘制时间-杀菌曲线。采用菌落平板计数法测定了纳米银对3种标准菌株的“抗生素后效应”(post-antibiotic effect,PAE),最后在生物安全II级实验室测定纳米银对临床分离的多重耐药菌株的抗菌作用。[结果]用生物法合成了粒径5-30 nm的纳米银,zeta电位为-19.5 mV。该纳米银制剂对3种标准菌株的时间-杀菌曲线均表现为时间依赖型抗菌作用。纳米银对大肠杆菌和白色念珠菌“抗生素后效应”随着浓度增加而增加,对金黄色葡萄球菌无明显“抗生素后效应”。纳米银对3种标准菌株的MIC值和MBC值均在1.00-4.00 μg/mL之间;对3株人源性多重耐药菌MIC值在6.00-26.00 μg/mL之间,MBC值在1.00-32.00 μg/mL之间;对14株动物源性多重耐药菌MIC值在4.00-10.00 μg/mL之间,MBC值在8.00-16.00 μg/mL之间。纳米银对所有测试菌株的MBC/MIC值均小于2。[结论]纳米银是一种时间依赖型的抗菌剂,有不同程度的“抗生素后效应”,对人源和动物源性多重耐药菌有杀菌作用。

    Abstract:

    [Objective] The objective of the study was to assess the antimicrobial activity of silver nanoparticles (AgNPs) against multiple drug resistant strains. [Methods] Minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of AgNPs against three model microbes, namely Escherichia coli, Staphylococcus aureus, Candida albicans were measured by microdilution broth method. Time-kill curve within 24 h was made according to colony count method after three model microbes were treated with a series concentration of AgNPs. Post-antibiotic effect was tested by colony count method. Finally, we determined the antimicrobial efficacy against multiple drug resistant strains in biological safety laboratory grade 2 (BSL-2). [Results] AgNPs with a diameter of 5 nm to 30 nm were synthesized by the biological method. The zeta potential was -19.5 mV. The time-kill curve of the three model microbes showed time-dependent antibacterial activity. The effect of AgNPs on E. coli and C. albicans after "antibiotic effect" increased with time, there was no obvious "post-antibiotic effect" on S. aureus. Both MIC values and MBC values of AgNPs for the three model microbes were between 1 μg/mL and 4 μg/mL. However, the MIC value of AgNPs for the three human multidrug-resistant strains was 6 μg/mL to 26 μg/mL and MBC value of AgNPs was 10 μg/mL to 32 μg/mL. The MIC values of AgNPs for 14 animal multi-drug resistant strains were between 4 μg/mL and 10 μg/mL, and the MBC values were between 8 μg/mL and 16 μg/mL. The MBC/MIC values of all the tested strains were less than 2. [Conclusion] AgNPs is a time-dependent antimicrobial agent with different "post-antibiotic effect", which can inhibit both human and animal-derived multi-drug resistant bacteria.

    参考文献
    [1] Klasen HJ. Historical review of the use of silver in the treatment of burns. I. Early uses. Burns, 2000, 26(2): 117-130.
    [2] Klasen HJ. A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 2000, 26(2): 131-138.
    [3] Lansdown ABG. Silver I: its antibacterial properties and mechanism of action. Journal of Wound Care, 2002, 11(4): 125-130.
    [4] Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? Journal of Antimicrobial Chemotherapy, 2007, 59(4): 587-590.
    [5] Taubes G. The bacteria fight back. Science, 2008, 321(5887): 356-361.
    [6] Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. The Lancet Infectious Diseases, 2010, 10(9): 621-629.
    [7] Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chemical Society Reviews, 2014, 43(5): 1501-1518.
    [8] Jones SA, MPhil PGB, Walker M, Parsons D. Controlling wound bioburden with a novel silver-containing Hydrofiber® dressing. Wound Repair and Regeneration, 2004, 12(3): 288-294.
    [9] Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chemistry, 2006, 8(5): 417-432.
    [10] Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3(1): 95-101.
    [11] Cohen MS, Stern JM, Vanni AJ, Kelley RS, Baumgart E, Field D, Libertino JA, Summerhayes IC. In vitro analysis of a nanocrystalline silver-coated surgical mesh. Surgical Infections, 2007, 8(3): 397-403.
    [12] Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ. Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? Journal of Antimicrobial Chemotherapy, 2004, 54(6): 1019-1024.
    [13] Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers, 2008, 72(1): 43-51.
    [14] Jain P, Pradeep T. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnology and Bioengineering, 2005, 90(1): 59-63.
    [15] Iravani S. Green synthesis of metal nanoparticles using plants. Green Chemistry, 2011, 13(10): 2638-2650.
    [16] Park TJ, Lee KG, Lee SY. Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology, 2016, 100(2): 521-534.
    [17] Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJJ. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 2012, 12(8): 4271-4275.
    [18] Yang XY, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN. Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environmental Science & Technology, 2012, 46(2): 1119-1127.
    [19] Yan L, Qin TC, Ingle T, Yan J, He WW, Yin JJ, Chen T. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 2016: 1-11.
    [20] Bai L, Hurley D, Li J, Meng Q, Wang J, Fanning S, Xiong YW. Characterisation of multidrug-resistant Shiga toxin-producing Escherichia coli cultured from pigs in China: co-occurrence of extended-spectrum β-lactamase- and mcr-1-encoding genes on plasmids. International Journal of Antimicrobial Agents, 2016, 48(4): 445-448.
    [21] Qin GQ, Xiong YX, Tang S, Zhao P, Doering JA, Beitel SC, Hecker M, Wang M, Liu HL, Lu HL, Du HM. Impact of predator cues on responses to silver nanoparticles in Daphnia carinata. Archives of Environmental Contamination and Toxicology, 2015, 69(4): 494-505.
    [22] 中华人民共和国国家质量监督检验检疫总局. GB 15979-2002 一次性使用卫生用品卫生标准. 北京: 中国标准出版社, 2002.
    [23] Xiong XH, Hu YY, Hong XS, Yang Y. Study on bactericidal capability of silver nanoparticles to Escherichia coli in water. Industrial Water & Wastewater, 2014, 45(3): 39-43. (in Chinese)
    熊旭华, 胡勇有, 洪学森, 杨杨. 纳米银对水中大肠杆菌的杀菌性能研究. 工业用水与废水, 2014, 45(3): 39-43.
    [24] CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-seventh edition. M7-A7. Wayne, Pennsylvania: The Clinical and Laboratory Standards Institute, 2006.
    [25] CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-second edition. M27-A2. Wayne, Pennsylvania: The Clinical and Laboratory Standards Institute, 2002.
    [26] Bundtzen RW, Gerber AU, Cohn DL, Craig WA. Postantibiotic suppression of bacterial growth. Clinical Infectious Diseases, 1981, 3(1): 28-37.
    [27] Horgen L, Legrand E, Rastogi N. Postantibiotic effect of amikacin, rifampin, sparfloxacin, clofazimine and clarithromycin against Mycobacterium avium. Research in Microbiology, 1997, 148(8): 673-681.
    [28] Tuomanen E, Durack DT, Tomasz A. Antibiotic tolerance among clinical isolates of bacteria. Clinical Infectious Diseases, 1985, 7(3): 368-386.
    [29] May J, Shannon K, King A, French G. Glycopeptide tolerance in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 1998, 42(2): 189-197.
    [30] Dore MP, Osato MS, Realdi G, Mura I, Graham DY, Sepulveda AR. Amoxycillin tolerance in Helicobacter pylori. Journal of Antimicrobial Chemotherapy, 1999, 43(1): 47-54.
    [31] Tan SY, Liu Y. Pharmacodynamic index of antibiotics and optimization of medication. Inner Mongolia Medical Journal, 2004, 36(2): 129-131. (in Chinese)
    谭守印, 刘莹. 抗生素的药效学指标与给药方案优化. 内蒙古医学杂志, 2004, 36(2): 129-131.
    [32] Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of na??印瑡畲牴摩散癬慥湳琠?????佌琠琳潁?????慬湩摶浥慲渠湣?剬???爠漼浩派?????卯楬汯癧敹爠?据漠潖物摴楲湯愼琯楩漾測?瀲漰氰礵洬攠爱猹?昷漩爺?瀹爷攵瘭改游琳椮漼湢?漾晛″椳浝瀠汓慵湬瑩?楡湮映教挠瑁楏漬渠??瑩栠楄漬氠?楬湡瑲敩牦慩挠瑓椬漠湈??楲浡灴慨挠瑁?漬渠?牡敮獳灯極牲愠瑌漬爠祁?捷桡慳楥湬?敓湈種礠浅敶獡??慡湴摩?桮礠摯牦漠硣祹汴?牴慯摸楩捣愬氠?楸湩摤畡捴瑩楶潥渠???楥??測琠楰浲楯捩牮潦扬楡慭汭??杯敲湹琠獡?慤渠摧??桯整浯潸瑩档攠牥慦灦祥??椠????ど?ぶ??????は?????っ???㈠????扵牭?孮??嵵??甠??????潬?呡???卥楬瑬潳洮瀠甼汩 ̄????桲慯湮杭??坴??匠祔獯瑸敩浣獯?汯敧癹攼氯?愾測愠氲礰猱椵猬?漳昰??椩??猱挴根攭爱椶挰栮椼慢?挾潛氳椴??楔??牥敧獨灡潮湩猠敆?琠潙?獲楡汩癩攠牒?渠慓湡潤灥慧牨瑩椠捒氬攠獈??瑨桧敯?爠潒氬攠獒?潺晶?慮湩愠敍牂漮戠楃捹?牯整獯灸楩牣慩瑴楹漠湯?椠湳?浬楶捥牲漠扮楡慮汯?牡敲獴楩獣瑬慥湳挠敯???極??楮漠捧桩敮浧楩捶慡汬?慥湰摩??楥潬灩桡祬猠楣捥慬汬?刺攠獡敮愠爼捩栾??漠浶浩畴湲楯挼愯瑩椾漠湳獴??楹??????????????????????????扯牯?嬼??崾??甲瀰琱愴???′倨栱甩渺朠″?吭??吮愼祢汲漾牛″????卵楯氠癚攬爠?卨???楇癑攬爠獌楩瑵礠?潚昬?獚楥汮癧攠片?爬攠獈極獡瑮慧渠捚敚?朠敃湨敥獮?楁湗??湈捵??椮渠捁潣浴灩慶瑩楴批椠汶楡瑲祩?杴物潯畮瀠?灦氠愼獩派楰摨獡???楯??楡捥牴潥戠楣潨汲潹杳祯??楯??????????????㈠?????????????posure by controlling of different sulfide sources. Scientific Reports, 2016, 6: 20813.
    [36] Calabrese EJ. Overcompensation stimulation: a mechanism for hormetic effects. Critical Reviews in Toxicology, 2001, 31(4/5): 425-470.
    [37] Panáček A, Kvítek L, Prúcek R, Kolár M, Večeřová R, Pizúrová N, Sharma VK, Nevěčná T, Zbořil R. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B, 2006, 110(33): 16248-16253.
    [38] Lara HH, Ayala-Núñez V, del Carmen Ixtepan Turrent L, Rodríguez-Padilla C. Bactericidal effect of AgNPs against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 2009, 26(4): 615-621.
    [39] Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions. Letters in Applied Microbiology, 1997, 25(4): 279-283.
    [40] Li WR, Xie XB, Shi QS, Zeng HY, Ouyang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology, 2010, 85(4): 1115-1122.
    [41] Gordon O, Vig Slenters T, Brunetto PS, Villaruz AE
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈学情,蒋家璇,任志鸿,李娟,张红英,徐建国,杜华茂. 纳米银的抗菌特性及对多重耐药菌株的抗菌作用[J]. 微生物学报, 2017, 57(4): 539-549

复制
分享
文章指标
  • 点击次数:1223
  • 下载次数: 4245
  • HTML阅读次数: 964
  • 引用次数: 0
历史
  • 收稿日期:2016-08-08
  • 最后修改日期:2016-12-09
  • 在线发布日期: 2017-03-31
文章二维码