红球菌R04苯甲酸转运相关膜蛋白RHOGL009301的生理功能
作者:
基金项目:

山西省自然科学基金(2014011030-3)


Physiological function of membrane protein RHOGL009301 involved in transport of benzoate in Rhodococcus sp. R04
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]探究红球菌(Rhodococcus sp.) R04膜蛋白RHOGL009301的生理功能和突变菌株的代谢特性,确定该膜蛋白的生理功能与苯甲酸转运的关系。[方法]将RHOGL009301基因与绿色荧光蛋白基因在Rhodococcus erythropolis进行融合表达,Delta Vision观察该基因蛋白产物的定位。通过基因同源重组敲除RHOGL009301基因,并对比野生型菌株和缺陷型菌株在不同碳源培养下的生长情况。HPLC测定红球菌R04野生型菌株和缺陷型菌株代谢联苯和苯甲酸时细胞内外代谢物,分析不同生长条件下代谢物的浓度变化。[结果]RHOGL009301基因与绿色荧光蛋白基因在Rhodococcus erythropolis中实现共表达,并定位在细胞膜上。获得了RHOGL009301基因的缺陷型菌株R04ΔMP,与野生型菌株相比,缺陷型菌株在联苯和苯甲酸培养条件下的生物量明显降低,生长速度减慢。HPLC分析表明RHOGL009301基因的缺失抑制了苯甲酸的转运。[结论]膜蛋白RHOGL009301是苯甲酸代谢和转运相关的蛋白,基于序列同源性分析,该膜蛋白是一种新型的苯甲酸转运蛋白。

    Abstract:

    [Objective] The physiological function of membrane protein RHOGL009301 in Rhodococcus sp. R04 and the metabolic properties of the mutant strain were studied to determine the relationship between the physiological function of the membrane protein and the transport of benzoate. [Methods] The RHOGL009301 gene and the green fluorescent protein gene were fused for expressing in Rhodococcus erythropolis, and the location of RHOGL009301 was observed by Delta Vision. The RHOGL009301 gene was knocked out by homologous recombination, and the growth of wild strain and deficient strain in different carbon sources were compared. The internal and external metabolites of the wild strain and the deficient strain when grown on biphenyl and benzoate were measured by HPLC, and the changes of metabolite concentration in different growth conditions were analyzed. [Results] A fusion gene that contained RHOGL009301 gene and the green fluorescent protein gene was co-expressed in Rhodococcus erythropolis and localized on the cell membrane. The deficient strain R04ΔMP of RHOGL009301 gene was obtained. The biomass of the deficient strain was significantly reduced in biphenyl and benzoate culture, and its growth rate was slowed down. HPLC analysis showed that the deletion of RHOGL009301 gene inhibited the transport of benzoate.[Conclusion] RHOGL009301 membrane protein is one of the proteins involved in metabolism and transport of benzoate. Based on sequence homology analysis, we can conclude that the membrane protein is a novel benzoate transport protein.

    参考文献
    [1] Yang XQ, Sun Y, Qian SJ. Biodegradation of seven polychlorinated biphenyls by a newly isolated aerobic bacterium (Rhodococcus sp. R04). Journal of Industrial Microbiology and Biotechnology, 2004, 31(9): 415-420.
    [2] Bedard DL, Haberl ML, May RJ, Brennan MJ. Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Applied and Environmental Microbiology, 1987, 53(5): 1103-1112.
    [3] Omori T, Ishigooka H, Minoda Y. Purification and some properties of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) reducing enzyme from Pseudomonas cruciviae S93B1 involved in the degradation of biphenyl. Agricultural and Biological Chemistry, 1986, 50(6): 1513-1518.
    [4] Harwood CS, Nichols NN, Kim MK, Ditty JL, Parales RE. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. Journal of Bacteriology, 1994, 176(21): 6479-6488.
    [5] Caldwell ME, Suflita JM. Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environmental Science & Technology, 2000, 34(7): 1216-1220.
    [6] Zhang XY, Gai ZH, Tai C, Xu P. Advances in benzoic acid degradation by microorganism. Microbiology China, 2012, 39(12): 1808-1816. (in Chinese)
    张晓云, 盖忠辉, 台萃, 许平. 微生物降解苯甲酸的研究进展. 微生物学通报, 2012, 39(12): 1808-1816.
    [7] Wehrmann A, Morakkabati S, Krämer R, Sahm H, Eggeling L. Functional analysis of sequences adjacent to dapE of Corynebacterium glutamicum reveals the presence of aroP, which encodes the aromatic amino acid transporter. Journal of Bacteriology, 1995, 177(20): 5991-5993.
    [8] Chaudhry MT, Huang Y, Shen XH, Poetsch A, Jiang CY, Liu SJ. Genome-wide investigation of aromatic acid transporters in Corynebacterium glutamicum. Microbiology, 2007, 153(3): 857-865.
    [9] Zhan YH, Yu HY, Yan YL, Chen M, Lu W, Li SY, Peng ZX, Zhang W, Ping SZ, Wang J, Lin M. Genes involved in the benzoate catabolic pathway in Acinetobacter calcoaceticus PHEA-2. Current Microbiology, 2008, 57(6): 609-614.
    [10] Jeffrey WH, Cuskey SM, Chapman PJ, Resnick S, Olsen RH. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower-pathway promoter. Journal of Bacteriology, 1992, 174(15): 4986-4996.
    [11] Yang XQ, Xue R, Shen C, Li SR, Gao C, Wang Q, Zhao XX. Genome sequence of Rhodococcus sp. strain R04, a polychlorinated-biphenyl biodegrader. Journal of Bacteriology, 2011, 193(18): 5032-5033.
    [12] André B. An overview of membrane transport proteins in Saccharomyces cerevisiae. Yeast, 1995, 11(16): 1575-1611.
    [13] Vinothkumar KR, Henderson R. Structures of membrane proteins. Quarterly Reviews of Biophysics, 2010, 43(1): 65-158.
    [14] Yang XQ, Xi JW. Transcriptomic and benzoate metabolic pathways of Rhodococcus sp. R04 cultured in biphenyl. Acta Microbiologica Sinica, 2015, 55(7): 851-862. (in Chinese)
    杨秀清, 席婧雯. 联苯培养条件下红球菌R04转录表达和苯甲酸代谢途径解析. 微生物学报, 2015, 55(7): 851-862.
    [15] Hayteas DL, Duffield DA. The determination by HPLC of PCB and p,p′-DDE residues in marine mammals stranded on the Oregon Coast, 1991-1995. Marine Pollution Bulletin, 1997, 34(10): 844-848.
    [16] Yang XQ, Zheng Y, Li PL, Wang JR. Influencing factor for the biodegradation of polyhalogenated biphenyls by Rhodococcus sp. R04. China Environmental Science, 2010, 30(5): 694-698. (in Chinese)
    杨秀清, 郑媛, 李鹏丽, 王婧人. 红球菌-R04生物降解多卤代联苯的影响因素研究. 中国环境科学, 2010, 30(5): 694-698.
    [17] Kitagawa W, Miyauchi K, Masai E, Fukuda M. Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1. Journal of Bacteriology, 2001, 183(22): 6598-6606.
    [18] Seah SYK, Labbé G, Nerdinger S, Johnson MR, Snieckus V, Eltis LD. Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. The Journal of Biological Chemistry, 2000, 275(21): 15701-15708.
    [19] Ma WH, Zhao Z, Wang Y, Zhang YZ, Ding JY. Effect of aromatic amino acid transport gene knock-out on L-tryptophan accumulation in Corynebacterium pekinense PD-67. Acta Microbiologica Sinica, 2012, 52(11): 1344-1351. (in Chinese)
    马温华, 赵智, 王宇, 张英姿, 丁久元. 北京棒杆菌芳香族氨基酸转运蛋白基因敲除对L-色氨酸积累的影响. 微生物学报, 2012, 52(11): 1344-1351.
    [20] Michalska K, Chang C, Mack JC, Zerbs S, Joachimiak A, Collart FR. Characterization of transport proteins for aromatic compounds derived from lignin: benzoate derivative binding proteins. Journal of Molecular Biology, 2012, 423(4): 555-575.
    [21] Harayama S, Rekik M, Bairoch A, Neidle EL, Ornston LN. Potential DNA slippage structures acquired during evolutionary divergence of Acinetobacter calcoaceticus chromosomal benABC and Pseudomonas putida TOL pWW0 plasmid xylXYZ, genes encoding benzoate dioxygenases. Journal of Bacteriology, 1991, 173(23): 7540-7548.
    [22] Youn JW, Jolkver E, Krämer R, Marin K, Wendisch VF. Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. Journal of Bacteriology, 2009, 191(17): 5480-5488.
    [23] Li KW, Gu WP, Liang JR, Xiao YC, Qiu HY, Yang HS, Wang X, Jing HQ. Gene polymorphism analysis of Yersinia enterocolitica outer membrane protein A and putative outer membrane protein A family protein. BMC Genomics, 2014, 15(1): 201.
    [24] Emmerstorfer A, Wriessnegger T, Hirz M, Pichler H. Overexpression of membrane proteins from higher eukaryotes in yeasts. Applied Microbiology and Biotechnology, 2014, 98(18): 7671-7698.
    [25] Cho W, Stahelin RV. Membrane-protein interactions in cell signaling and membrane trafficking. Annual Review of Biophysics and Biomolecular Structure, 2005, 34(1): 119-151.
    [26] Lino B, Chagolla A, de la Vara LEG. Membrane proteins involved in transport, vesicle traffic and Ca2+ signaling increase in beetroots grown in saline soils. Planta, 2016, 244(1): 87-101.
    [27] Nishikawa Y, Yasumi Y, Noguchi YS, Sakamoto H, Nikawa JI. Functional analyses of Pseudomonas putida benzoate transporters expressed in the yeast Saccharomyces cerevisiae. Bioscience, Biotechnology, and Biochemistry, 2008, 72(8): 2034-2038.
    [28] Chen DW, Zhang Y, Jiang CY, Liu SJ. Benzoate metabolism intermediate benzoyl coenzyme A affects gentisate pathway regulation in Comamonas testosteroni. Applied and Environmental Microbiology, 2014, 80(13): 4051-4062.
    [29] Cao B, Geng AL, Loh KC. Induction of ortho- and meta-cleavage pathways in Pseudomonas in biodegradation of high benzoate concentration: MS identification of catabolic enzymes. Applied Microbiology and Biotechnology, 2008, 81(1): 99-107.
    [30] Altenschmidt U, Oswald B, Steiner E, Herrmann H, Fuchs G. New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp.. Journal of Bacteriology, 1993, 175(15): 4851-4858.
    [31] 王松鹤. 谷氨酸棒杆菌中苯甲酸转运蛋白研究. 中国科学院研究生院博士学位论文, 2011.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨秀清,郭兆琳. 红球菌R04苯甲酸转运相关膜蛋白RHOGL009301的生理功能[J]. 微生物学报, 2017, 57(4): 609-620

复制
分享
文章指标
  • 点击次数:686
  • 下载次数: 1812
  • HTML阅读次数: 858
  • 引用次数: 0
历史
  • 收稿日期:2016-11-17
  • 最后修改日期:2016-12-28
  • 在线发布日期: 2017-03-31
文章二维码