人类口腔微生物组学研究:现状、挑战及机遇
作者:
基金项目:

国家自然科学基金(81430011,31425002,81670978)


Human oral microbiome: progress, challenge and opportunity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [91]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    全球超过一半的人口患有口腔疾病,其医护费用与全球十大常见死亡病因的花费相当,而且口腔感染与早产、动脉粥样硬化、肝硬化、糖尿病、阿尔茨海默病等全身性或慢性疾病显著相关,因此,口腔微生物组一直是人类微生物组计划的主要研究对象之一。与人体其他部位比较,口腔微生物组研究具有取样快捷、宿主反应表征方便、干预手段直接有效等特点;同时,超过65%的口腔细菌类群已可培养,诸多代表性菌株的全基因组信息已破译。因此口腔微生物组在菌群内部调控网络及其与宿主互作机制、局部感染对远隔器官的影响机制、以及基于菌群的慢病早期预警等微生物组研究核心科学问题上具备作为模式研究体系与技术示范对象的重要优势。本文在分析口腔微生物组学国际、国内研究现状的基础上,建议尽快启动中国人口腔微生物组计划(China humanoral microbiome project, CHOMP),通过产学研协同攻关,开拓基于口腔菌群的口腔及全身系统性疾病的个体化预防、诊断及治疗策略。

    Abstract:

    Oral diseases affect over half of world’s population and cost the health care the same budget as for the top ten mortality diseases. Moreover, oral infections are associated with systemic or chronic diseases such as preterm birth, atherosclerosis, cirrhosis, diabetes and Alzheimer’s disease. Hence, oral microbiome has always been one of the major targets of Human Microbiome Projects. Compared to other body sites, oral microbiome research is characterized by easily-accessible sampling, convenience in phenotyping host responses and directness and high efficacy of intervention approaches. In addition, over 65% of oral bacteria groups are deemed culturable, and genomes of representative strains from these groups have mostly been sequenced. Therefore, oral microbiome is becoming an exceptional research model and basis of technological demonstration for the fundamental questions of human microbiome research, such as inter-species interaction networks, impact of local infection on remote organs, and predictive modeling of chronic diseases, etc. By reviewing the recent scientific and technological progresses in oral microbiome study, here we advocate for the initiation of China Human Oral Microbiome Project (CHOMP), which calls for the collaborative and synergistic efforts from academic, clinical and industrial fronts for exploring and developing strategies and solutions for personalized prognosis, diagnosis and therapy for oral and systemic diseases based on oral microbiome.

    参考文献
    [1] Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. Journal of Bacteriology, 2010, 192(19):5002-5017.
    [2] Wade WG. The oral microbiome in health and disease. Pharmacological Research, 2013, 69(1):137-143.
    [3] He JZ, Li Y, Cao YP, Xue J, Zhou XD. The oral microbiome diversity and its relation to human diseases. Folia Microbiologica, 2015, 60(1):69-80.
    [4] Listl S, Galloway J, Mossey PA, Marcenes W. Global economic impact of dental diseases. Journal of Dental Research, 2015, 94(10):1355-1361.
    [5] He XS, Shi WY. Oral microbiology:past, present and future. International Journal of Oral Science, 2009, 1(2):47-58.
    [6] Baker JL, Bor B, Agnello M, Shi WY, He XS. Ecology of the oral microbiome:beyond bacteria. Trends in Microbiology, 2017, doi:10.1016/j.tim.2016.12.012.
    [7] He XS, McLean JS, Edlund A, Yooseph S, Hall AP, Liu SY, Dorrestein PC, Esquenazi E, Hunter RC, Cheng GH, Nelson KE, Lux R, Shi WY. Cultivation of a human-associated TM7 phylotype reveals a reduced genome and epibiotic parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(1):244-249.
    [8] Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG. Biogeography of a human oral microbiome at the micron scale. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(6):E791-E800.
    [9] Guo LH, McLean JS, Yang Y, Eckert R, Kaplan CW, Kyme P, Sheikh O, Varnum B, Lux R, Shi WY, He XS. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24):7569-7574.
    [10] Teng F, Yang F, Huang S, Bo CP, Xu ZZ, Amir A, Knight R, Ling JQ, Xu J. Prediction of early childhood caries via spatial-temporal variations of oral microbiota. Cell Host & Microbe, 2015, 18(3):296-306.
    [11] Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The human oral microbiome database:a web accessible resource for investigating oral microbe taxonomic and genomic information. Database, 2010, 2010:baq013.
    [12] Keijser BJF, Zaura E, Huse SM, van der Vossen JMBM, Schuren FHJ, Montijn RC, ten Gate JM, Crielaard W. Pyrosequencing analysis of the oral microflora of healthy adults. Journal of Dental Research, 2008, 87(11):1016-1020.
    [13] Xu X, He JZ, Xue J, Wang Y, Li K, Zhang KK, Guo Q, Liu XH, Zhou Y, Cheng L, Li MY, Li YQ, Li Y, Shi WY, Zhou XD. Oral cavity contains distinct niches with dynamic microbial communities. Environmental Microbiology, 2015, 17(3):699-710.
    [14] Gizani S, Papaioannou W, Haffajee AD, Kavvadia K, Quirynen M, Papagiannoulis L. Distribution of selected cariogenic bacteria in five different intra-oral habitats in young children. International Journal of Paediatric Dentistry, 2009, 19(3):193-200.
    [15] Huse SM, Ye YZ, Zhou YJ, Fodor AA. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS One, 2012, 7(6):e34242.
    [16] Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26):11971-11975.
    [17] Crielaard W, Zaura E, Schuller AA, Huse SM, Montijn RC, Keijser BJF. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Medical Genomics, 2011, 4:22.
    [18] Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Research, 2009, 19(4):636-643.
    [19] Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science, 2009, 326(5960):1694-1697.
    [20] Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J. Study of inter-and intra-individual variations in the salivary microbiota. BMC Genomics, 2010, 11:523.
    [21] Du Q, Wang Y, Xu X, Li YQ, Li MY, Zou J, Zhou XD. Analysis of the oral microbiota in twin children. West China Journal of Stomatology, 2014, 32(2):182-185. (in Chinese) 杜芹, 王艳, 徐欣, 李雨庆, 李明云, 邹静, 周学东. 双生子儿童口腔微生物群组结构分析. 华西口腔医学杂志, 2014, 32(2):182-185.
    [22] Huang S, Li R, Zeng XW, He T, Zhao HL, Chang A, Bo CP, Chen J, Yang F, Knight R, Liu JQ, Davis C, Xu J. Predictive modeling of gingivitis severity and susceptibility via oral microbiota. The ISME Journal, 2014, 8(9):1768-1780.
    [23] Li Y, He JZ, He ZL, Zhou Y, Yuan MT, Xu X, Sun FF, Liu CC, Li JY, Xie WB, Deng Y, Qin YJ, VanNostrand JD, Xiao LY, Wu LY, Zhou JZ, Shi WY, Zhou XD. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. The ISME Journal, 2014, 8(9):1879-1891.
    [24] Wang JF, Qi J, Zhao H, He S, Zhang YF, Wei SC, Zhao FQ. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Scientific Reports, 2013, 3:1843.
    [25] Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, Yang ZK, Podar M, Leys EJ. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. The ISME Journal, 2012, 6(6):1176-1185.
    [26] Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. mBio, 2014, 5(2):e01012-14.
    [27] Siqueira Jr JF, Rôças IN. Community as the unit of pathogenicity:an emerging concept as to the microbial pathogenesis of apical periodontitis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2009, 107(6):870-878.
    [28] Siqueira Jr JF. Endodontic infections:concepts, paradigms, and perspectives. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2002, 94(3):281-293.
    [29] Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE, Paster BJ. Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. Journal of Clinical Microbiology, 2003, 41(2):558-563.
    [30] Wang K, Lu WX, Tu QC, Ge YC, He JZ, Zhou Y, Gou YP, Van Nostrand JD, Qin YJ, Li JY, Zhou JZ, Li Y, Xiao LY, Zhou XD. Preliminary analysis of salivary microbiome and their potential roles in oral lichen planus. Scientific Reports, 2016, 6:22943.
    [31] Wang K, Miao TY, Lu WX, He JZ, Cui BM, Li JY, Li Y, Xiao LY. Analysis of oral microbial community and Th17-associated cytokines in saliva of patients with oral lichen planus. Microbiology and Immunology, 2015, 59(3):105-113.
    [32] Pizzo G, Guiglia R, Russo LL, Campisi G. Dentistry and internal medicine:from the focal infection theory to the periodontal medicine concept. European Journal of Internal Medicine, 2010, 21(6):496-502.
    [33] Miyabayashi H, Furihata K, Shimizu T, Ueno I, Akamatsu T. Influence of oral Helicobacter pylori on the success of eradication therapy against gastric Helicobacter pylori. Helicobacter, 2000, 5(1):30-37.
    [34] Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, Ohno H, Yamazaki K. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One, 2015, 10(7):e0134234.
    [35] Arimatsu K, Yamada H, Miyazawa H, Minagawa T, Nakajima M, Ryder MI, Gotoh K, Motooka D, Nakamura S, Iida T, Yamazaki K. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific Reports, 2014, 4:4828.
    [36] Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, Allen-Vercoe E, Holt RA. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome, 2013, 1:16.[37] Bashir A, Miskeen AY, Bhat A, Fazili KM, Ganai BA. Fusobacterium nucleatum:an emerging bug in colorectal tumorigenesis. European Journal of Cancer Prevention, 2015, 24(5):373-385.
    [38] Mima K, Nishihara R, Qian ZR, Cao Y, Sukawa Y, Nowak JA, Yang JH, Dou RX, Masugi Y, Song MY, Kostic AD, Giannakis M, Bullman S, Milner DA, Baba H, Giovannucci EL, Garraway LA, Freeman GJ, Dranoff G, Garrett WS, Huttenhower C, Meyerson M, Meyerhardt JA, Chan AT, Fuchs CS, Ogino S. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut, 2016, 65(12):1973-1980.
    [39] Guinane CM, Tadrous A, Fouhy F, Ryan CA, Dempsey EM, Murphy B, Andrews E, Cotter PD, Stanton C, Ross RP. Microbial composition of human appendices from patients following appendectomy. mBio, 2013, 4(1):e00366-12.
    [40] Qin N, Yang FL, Li A, Prifti E, Chen YF, Shao L, Guo J, Le Chatelier E, Yao J, Wu LJ, Zhou JW, Ni SJ, Liu L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan CH, Ding WC, Chen YT, Hu XJ, Zheng BW, Qian GR, Xu W, Ehrlich SD, Zheng SS, Li LJ. Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513(7516):59-64.
    [41] Zhang ZG, Zhai HQ, Geng JW, Yu R, Ren HQ, Fan H, Shi P. Large-scale survey of gut microbiota associated with MHE via 16S rRNA-based pyrosequencing. The American Journal of Gastroenterology, 2013, 108(10):1601-1611.
    [42] Singhal S, Dian D, Keshavarzian A, Fogg L, Fields JZ, Farhadi A. The role of oral hygiene in inflammatory bowel disease. Digestive Diseases and Sciences, 2011, 56(1):170-175.
    [43] Fåk F, Tremaroli V, Bergström G, Bäckhed F. Oral microbiota in patients with atherosclerosis. Atherosclerosis, 2015, 243(2):573-578.
    [44] Ford PJ, Gemmell E, Hamlet SM, Hasan A, Walker PJ, West MJ, Cullinan MP, Seymour GJ. Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis. Oral Microbiology and Immunology, 2005, 20(5):296-302.
    [45] Figuero E, Sánchez-Beltrán M, Cuesta-Frechoso S, Tejerina JM, del Castro JA, Gutiérrez JM, Herrera D, Sanz M. Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. Journal of Periodontology, 2011, 82(10):1469-1477.
    [46] Pucar A, Milasin J, Lekovic V, Vukadinovic M, Ristic M, Putnik S, Kenney EB. Correlation between atherosclerosis and periodontal putative pathogenic bacterial infections in coronary and internal mammary arteries. Journal of Periodontology, 2007, 78(4):677-682.
    [47] Mager DL, Haffajee AD, Devlin PM, Norris CM, Posner MR, Goodson JM. The salivary microbiota as a diagnostic indicator of oral cancer:a descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects. Journal of Translational Medicine, 2005, 3:27.
    [48] Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DTW. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut, 2012, 61(4):582-588.
    [49] Mendz GL, Kaakoush NO, Quinlivan JA. Bacterial aetiological agents of intra-amniotic infections and preterm birth in pregnant women. Frontiers in Cellular and Infection Microbiology, 2013, 3:58.
    [50] Offenbacher S, Katz V, Fertik G, Collins J, Boyd D, Maynor G, McKaig R, Beck J. Periodontal infection as a possible risk factor for preterm low birth weight. Journal of Periodontology, 1996, 67(10s):1103-1113.
    [51] Fardini Y, Chung P, Dumm R, Joshi N, Han YW. Transmission of diverse oral bacteria to murine placenta:evidence for the oral microbiome as a potential source of intrauterine infection. Infection and Immunity, 2010, 78(4):1789-1796.
    [52] Zhou M, Rong RC, Munro D, Zhu CX, Gao X, Zhang Q, Dong QF. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One, 2013, 8(4):e61516.
    [53] Casarin RCV, Barbagallo A, Meulman T, Santos VR, Sallum EA, Nociti FH, Duarte PM, Casati MZ, Gonçalves RB. Subgingival biodiversity in subjects with uncontrolled type-2 diabetes and chronic periodontitis. Journal of Periodontal Research, 2013, 48(1):30-36.
    [54] Ciantar M, Gilthorpe MS, Hurel SJ, Newman HN, Wilson M, Spratt DA. Capnocytophaga spp. in periodontitis patients manifesting diabetes mellitus. Journal of Periodontology, 2005, 76(2):194-203.
    [55] Bartold PM, Marshall RI, Haynes DR. Periodontitis and rheumatoid arthritis:a review. Journal of Periodontology, 2005, 76(11-s):2066-2074.
    [56] Zhang X, Zhang DY, Jia HJ, Feng Q, Wang DH, Liang D, Wu XN, Li JH, Tang LQ, Li Y, Lan Z, Chen B, Li YL, Zhong HZ, Xie HL, Jie ZY, Chen WN, Tang SM, Xu XQ, Wang XK, Cai XH, Liu S, Xia Y, Li JY, Qiao XY, Al-Aama JY, Chen H, Wang L, Wu QJ, Zhang FC, Zheng WJ, Li YZ, Zhang MR, Luo GW, Xue WB, Xiao L, Li J, Chen WT, Xu X, Yin Y, Yang HM, Wang J, Kristiansen K, Liu L, Li T, Huang QC, Li YR, Wang J. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nature Medicine, 2015, 21(8):895-905.
    [57] Gonzalez A, Hyde E, Sangwan N, Gilbert JA, Viirre E, Knight R. Migraines are correlated with higher levels of nitrate-, nitrite-, and nitric oxide-reducing oral microbes in the American gut project cohort. mSystems, 2016, 1(5):e00105-16.
    [58] Miklossy J. Alzheimer disease——a spirochetosis?//Giacobini E, Becker RE. Alzheimer Disease. Boston:Birkhäuser, 1994:41-45.
    [59] Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer's disease. Oral Microbiology and Immunology, 2002, 17(2):113-118.
    [60] Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S. Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer's disease brain tissue. Journal of Alzheimer's Disease, 2013, 36(4):665-677.
    [61] Dickstein JB, Moldofsky H, Hay JB. Brain-blood permeability:TNF-α promotes escape of protein tracer from CSF to blood. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2000, 279(1):R148-R151.
    [62] Tian Y, He X, Torralba M, Yooseph S, Nelson KE, Lux R, McLean JS, Yu G, Shi W. Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Molecular Oral Microbiology, 2010, 25(5):357-367.
    [63] Xu J, Ma B, Su XQ, Huang S, Xu X, Zhou XD, Huang WE, Knight R. Emerging trends for microbiome analysis:from single-cell functional imaging to microbiome big data. Engineering, 2017, 3(1):66-70.
    [64] Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, Palatinszky M, Schintlmeister A, Schmid MC, Hanson BT, Shterzer N, Mizrahi I, Rauch I, Decker T, Bocklitz T, Popp J, Gibson CM, Fowler PW, Huang WE, Wagner M. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(2):E194-E203.
    [65] Ji YT, He YH, Cui YB, Wang TT, Wang Y, Li YG, Huang WE, Xu J. Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnology Journal, 2014, 9(12):1512-1518.
    [66] Wang TT, Ji YT, Wang Y, Jia J, Li J, Huang S, Han DX, Hu Q, Huang WE, Xu J. Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnology for Biofuels, 2014, 7:58.
    [67] Teng L, Wang X, Wang XJ, Gou HL, Ren LH, Wang TT, Wang Y, Ji YT, Huang WE, Xu J. Label-free, rapid and quantitative phenotyping of stress response in E. coli via ramanome. Scientific Reports, 2016, 6:34359.
    [68] Tao YF, Wang Y, Huang S, Zhu PF, Huang WE, Ling JQ, Xu J. Metabolic-activity-based assessment of antimicrobial effects by D2O-labeled single-cell raman microspectroscopy. Analytical Chemistry, 2017, 89(7):4108-4115, doi:10.1021/acs.analchem.6b05051.
    [69] Wang Y, Song YZ, Tao YF, Muhamadali H, Goodacre R, Zhou NY, Preston GM, Xu J, Huang WE. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Analytical Chemistry, 2016, 88(19):9443-9450.
    [70] Wang Y, Ji YT, Wharfe ES, Meadows RS, March P, Goodacre R, Xu J, Huang WE. Raman activated cell ejection for isolation of single cells. Analytical Chemistry, 2013, 85(22):10697-10701.
    [71] Zhang PR, Ren LH, Zhang X, Shan YF, Wang Y, Ji YT, Yin HB, Huang WE, Xu J, Ma B. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Analytical Chemistry, 2015, 87(4):2282-2289.
    [72] Zhang Q, Zhang PR, Su YT, Mou CB, Zhou T, Yang ML, Xu J, Ma B. On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab on a Chip, 2014, 14(24):4599-4603.
    [73] Zhang Q, Zhang PR, Gou HL, Mou CB, Huang WE, Yang ML, Xu J, Ma B. Towards high-throughput microfluidic Raman-activated cell sorting. Analyst, 2015, 140(18):6163-6174.
    [74] Mejàre I, Axelsson S, Dahlén G, Espelid I, Norlund A, Tranæus S, Twetman S. Caries risk assessment. A systematic review. Acta Odontologica Scandinavica, 2014, 72(2):81-91.
    [75] Tellez M, Gomez J, Pretty I, Ellwood R, Ismail AI. Evidence on existing caries risk assessment systems:are they predictive of future caries? Community Dentistry and Oral Epidemiology, 2013, 41(1):67-78.
    [76] Huang S, Li Z, He T, Bo CP, Chang JL, Li L, He YY, Liu JQ, Charbonneau D, Li R, Xu J. Microbiota-based signature of gingivitis treatments:a randomized study. Scientific Reports, 2016, 6:24705.
    [77] Eckert R, He J, Yarbrough DK, Qi FX, Anderson MH, Shi WY. Targeted killing of Streptococcus mutans by a pheromone-guided "smart" antimicrobial peptide. Antimicrobial Agents and Chemotherapy, 2006, 50(11):3651-3657.
    [78] Jiao KL, Zhu YJ, Xie PY, LI JP, Wu F, Zhou JY, Li ZQ, Yu ZH. Oral microbial community structure of periodontitis patients between Dongxiang and Yugurs in Gansu Province. Journal of Oral Science Research, 2015, 31(4):365-369. (in Chinese) 焦康礼, 朱玉娟, 谢沛原, 李俊平, 吴芳, 周建业, 李志强, 余占海. 甘肃东乡及裕固族牙周炎口腔微生物群落结构研究. 口腔医学研究, 2015, 31(4):365-369.
    [79] Ling ZX, Kong JM, Jia P, Wei CC, Wang YZ, Pan ZW, Huang WJ, Li LJ, Chen H, Xiang C. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microbial Ecology, 2010, 60(3):677-690.
    [80] Yang F, Zeng XW, Ning K, Liu KL, Lo CC, Wang W, Chen J, Wang DM, Huang RR, Chang XZ, Chain PS, Xie G, Ling JQ, Xu J. Saliva microbiomes distinguish caries-active from healthy human populations. The ISME Journal, 2012, 6(1):1-10.
    [81] Ren W, Xun Z, Wang ZC, Zhang Q, Liu XN, Zheng H, Zhang Q, Zhang YF, Zhang LS, Wu CY, Zheng SG, Qin N, Ehrlich SD, Li YH, He XS, Xu T, Chen T, Chen F. Tongue coating and the salivary microbial communities vary in children with halitosis. Scientific Reports, 2016, 6:24481.
    [82] Wang Y, Xue J, Zhou XD, You M, Du Q, Yang X, He JZ, Zou J, Cheng L, Li MY, Li YQ, Zhu YP, Li JY, Shi WY, Xu X. Oral microbiota distinguishes acute lymphoblastic leukemia pediatric hosts from healthy populations. PLoS One, 2014, 9(7):e102116.
    [83] Hu YJ, Wang Q, Jiang YT, Ma R, Xia WW, Tang ZS, Liu Z, Liang JP, Huang ZW. Characterization of oral bacterial diversity of irradiated patients by high-throughput sequencing. International Journal of Oral Science, 2013, 5(1):21-25.
    [84] Hu XS, Zhang Q, Hua H, Chen F. Changes in the salivary microbiota of oral leukoplakia and oral cancer. Oral Oncology, 2016, 56:e6-e8.
    [85] Zhang F, He SH, Jin JQ, Dong GY, Wu HK. Exploring salivary microbiota in AIDS patients with different periodontal statuses using 454 GS-FLX Titanium pyrosequencing. Frontiers in Cellular and Infection Microbiology, 2015, 5:55.
    [86] Su XQ, Wang XT, Jing GC, Ning K. GPU-Meta-Storms:computing the structure similarities among massive amount of microbial community samples using GPU. Bioinformatics, 2014, 30(7):1031-1033.
    [87] Su XQ, Xu J, Ning K. Meta-storms:efficient search for similar microbial communities based on a novel indexing scheme and similarity score for metagenomic data. Bioinformatics, 2012, 28(19):2493-2501.
    [88] Su XQ, Hu JQ, Huang S, Ning K. Rapid comparison and correlation analysis among massive number of microbial community samples based on MDV data model. Scientific Reports, 2014, 4:6393.
    [89] Jing GC, Sun Z, Wang HL, Gong YH, Huang S, Ning K, Xu J, Su XQ. Parallel-META 3:comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Scientific Reports, 2017, 7:40371.
    [90] Su XQ, Pan WH, Song BX, Xu J, Ning K. Parallel-META 2.0:enhanced metagenomic data analysis with functional annotation, high performance computing and advanced visualization. PLoS One, 2014, 9(3):e89323.
    [91] Yang P, Su XQ, Ou-Yang L, Chua HN, Li XL, Ning K. Microbial community pattern detection in human body habitats via ensemble clustering framework. BMC Systems Biology, 2014, 8:S7.
    [92] Stulberg E, Fravel D, Proctor LM, Murray DM, LoTempio J, Chrisey L, Garland J, Goodwin K, Graber J, Harris MC, Jackson S, Mishkind M, Porterfield DM, Records A. An assessment of US microbiome research. Nature Microbiology, 2016, 1:15015.
    相似文献
引用本文

周学东,徐健,施文元. 人类口腔微生物组学研究:现状、挑战及机遇[J]. 微生物学报, 2017, 57(6): 806-821

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-02-14
  • 最后修改日期:2017-04-09
  • 在线发布日期: 2017-05-27
文章二维码