高效降解木质纤维素的白蚁肠道微生物组
作者:
基金项目:

国家自然科学基金(31370055,31670004)


Gut microbiome of wood-feeding termites
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    木食性白蚁是自然界木质纤维素的高效降解者,在长期进化过程中白蚁与其肠道微生物组协同作用发展出不同的纤维素降解机制。木食性白蚁具有分别来源于白蚁和共生微生物的两套纤维素酶系统。在低等白蚁中,木质颗粒经过白蚁前、中肠分泌的内源性酶初步消化后,在后肠共生鞭毛虫中被降解为乙酸、二氧化碳和氢。高等木食性白蚁在进化中丢失了鞭毛虫,木质颗粒经白蚁自身分泌的酶初步消化后,在后肠大量共生细菌的帮助下被有效降解。培菌类白蚁利用其菌圃中的蚁巢伞菌和肠道微生物协同作用降解木质纤维素。共生微生物在白蚁的氮素固定与循环、中间产物代谢及纤维素降解等过程中发挥了重要作用。学习和模拟白蚁高效降解木质纤维素的体系,对生物质能源的产业化发展具有积极的意义。

    Abstract:

    Termites are efficient lignocellulose degraders in the natural ecosystem. During the long-time evolution, termites have developed different strategies to decompose lignocellulose efficiently with the help of their gut microbiome. Wood-feeding termites have duel-cellulolytic systems that originated from termites and their microbiota. In lower termites, wood particles are digested primarily by endogenous cellulase secreted from the host foregut and midgut and then decomposed almost completely by numerous flagellates in the hindgut of termites. The fermentation products are acetate, carbon dioxide and hydrogen. Wood-feeding higher termites lost flagellates during the evolution. Wood particles are digested primarily by endogenous cellulase secreted from the host and are subsequently degraded by symbiotic bacteria in the hindgut of the termites. Fungus-cultivating termites degrade wood particles with the help of Termitomyces they cultivated in the fungus combs and their intestinal microbiota. The symbiotic microbiota in termite guts may involve in bioprocess like nitrogen fixation and uric acid hydrolyzation, utilization and transformation of metabolic intermediates, and degradation of lignocellulose. It is meaningful to study and imitate the highly efficient lignocellulose-degrading system of termites for biofuel industry development.

    参考文献
    [1] Lo N, Eggleton P. Termite phylogenetics and co-cladogenesis with symbionts//Bignell DE, Roisin Y, Lo N. Biology of Termites:A Modern Synthesis. Dordrecht, Netherlands:Springer, 2011:27-50.
    [2] Brune A. Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 2014, 12(3):168-180.
    [3] Watanabe H, Tokuda G. Cellulolytic systems in insects. Annual Review of Entomology, 2010, 55:609-632.
    [4] Breznak JA. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites//Abe T, Bignell DE, Higashi M. Termites:Evolution, Sociality, Symbioses, Ecology. Dordrecht, Netherlands:Springer, 2000:209-231.
    [5] Ohkuma M, Brune A. Diversity, structure, and evolution of the termite gut microbial community//Bignell DE, Roisin Y, Lo N. Biology of Termites:A Modern Synthesis. Dordrecht, Netherlands:Springer, 2011:413-438.
    [6] Xie L, Liu N, Huang YP, Wang Q. Flagellate community structure in Coptotermes formosanus (Isoptera:Rhinotermitidae) and a comparison of three study methods. Acta Entomologica Sinica, 2011, 54(10):1140-1146. (in Chinese) 谢磊, 刘宁, 黄勇平, 王倩. 台湾乳白蚁肠道鞭毛虫群落结构及三种研究方法的比较. 昆虫学报, 2011, 54(10):1140-1146.
    [7] Chen W, Shi Y, Peng JX, Hong HZ, Yang H. Phylogenetic diversity analysis and in situ hybridization of symbiotic Oxymonad flagellates in the hindgut of Reticulitermes chinensis Snyder. Acta Ecologica Sinica, 2011, 31(18):5332-5340. (in Chinese) 陈文, 石玉, 彭建新, 洪华珠, 杨红. 黑胸散白蚁肠道共生锐滴虫目鞭毛虫的多样性分析与原位杂交鉴定. 生态学报, 2011, 31(18):5332-5340.
    [8] Brune A, Dietrich C. The gut microbiota of termites:digesting the diversity in the light of ecology and evolution. Annual Review of Microbiology, 2015, 69:145-166.
    [9] Brune A, Ohkuma M. Role of the termite gut microbiota in symbiotic digestion//Bignell DE, Roisin Y, Lo N. Biology of Termites:A Modern Synthesis. Dordrecht, Netherlands:Springer, 2011:439-475.
    [10] Ohkuma M, Kudo T. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Applied and Environmental Microbiology, 1996, 62(2):461-468.
    [11] Yang H, Schmitt-Wagner D, Stingl U, Brune A. Niche heterogeneity determines bacterial community structure in the termite gut (Reticulitermes santonensis). Environmental Microbiology, 2005, 7(7):916-932.
    [12] 陈娟. 两种木食性白蚁肠道内共生细菌多样性的比较研究. 华中师范大学硕士学位论文, 2011.
    [13] Shinzato N, Muramatsu M, Matsui T, Watanabe Y. Molecular phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus. Bioscience, Biotechnology, and Biochemistry, 2005, 69(4):1145-1155.
    [14] Brune A. Termite guts:the world's smallest bioreactors. Trends in Biotechnology, 1998, 16(1):16-21.
    [15] Shi Y, Zhang YH, Yang H. Phylogenetic analysis of symbiotic archaea in the gut of Reticulitermes chinensis. Acta Microbiologica Sinica, 2009, 49(12):1655-1659. (in Chinese) 石玉, 张燕鸿, 杨红. 黑胸散白蚁(Reticulitermes chinensis Snyder)肠道共生古菌的系统发育分析. 微生物学报, 2009, 49(12):1655-1659.
    [16] Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Applied and Environmental Microbiology, 2012, 78(13):4691-4701.
    [17] Hongoh Y, Deevong P, Hattori S, Inoue T, Noda S, Noparatnaraporn N, Kudo T, Ohkuma M. Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts. Applied and Environmental Microbiology, 2006, 72(10):6780-6788.
    [18] Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang XN, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 2007, 450(7169):560-565.
    [19] Shi Y, Huang Z, Han S, Fan S, Yang H. Phylogenetic diversity of Archaea in the intestinal tract of termites from different lineages. Journal of Basic Microbiology, 2015, 55(8):1021-1028.
    [20] Shinzato N, Muramatsu M, Matsui T, Watanabe Y. Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Bioscience, Biotechnology, and Biochemistry, 2007, 71(4):906-915.
    [21] Li HJ, Dietrich C, Zhu N, Mikaelyan A, Ma B, Pi RX, Liu Y, Yang MY, Brune A, Mo JC. Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus. Environmental Microbiology, 2016, 18(5):1440-1451.
    [22] Long YH, Xie L, Liu N, Yan X, Li MH, Fan MZ, Wang Q. Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Science, 2010, 17(3):265-276.
    [23] Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Molecular Ecology, 2006, 15(2):505-516.
    [24] Ebert A, Brune A. Hydrogen concentration profiles at the oxic-anoxic interface:a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Applied and Environmental Microbiology, 1997, 63(10):4039-4046.
    [25] Ni JF, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnology Advances, 2013, 31(6):838-850.
    [26] Peterson BF, Scharf ME. Lower termite associations with microbes:synergy, protection, and interplay. Frontiers in Microbiology, 2016, 7:422.
    [27] Poulsen M, Hu HF, Li C, Chen ZS, Xu LH, Otani S, Nygaard S, Nobre T, Klaubauf S, Schindler PM, Hauser F, Pan HL, Yang ZK, Sonnenberg ASM, de Beer ZW, Zhang Y, Wingfield MJ, Grimmelikhuijzen CJP, de Vries RP, Korb J, Aanen DK, Wang J, Boomsma JJ, Zhang GJ. Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40):14500-14505.
    [28] Leadbetter JR, Schmidt TM, Graber JR, Breznak JA. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science, 1999, 283(5402):686-689.
    [29] Du X, Li XJ, Wang Y, Peng JX, Hong HZ, Yang H. Phylogenetic diversity of nitrogen fixation genes in the intestinal tract of Reticulitermes chinensis Snyder. Current Microbiology, 2012, 65(5):547-551.
    [30] Desai MS, Brune A. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. The ISME Journal, 2012, 6(7):1302-1313.
    [31] Zheng H, Dietrich C, Radek R, Brune A. Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)-an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a Group IV nitrogenase. Environmental Microbiology, 2016, 18(1):191-204.
    [32] Fang H, Chen W, Wang BJ, Li XJ, Liu SJ, Yang H. Cultivation and characterization of symbiotic bacteria from the gut of Reticulitermes chinensis. Applied Environmental Biotechnology, 2016, 1(1):3-12.
    [33] Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochemistry and Molecular Biology, 2002, 32(7):777-784.
    [34] Breznak JA. Ecology of prokaryotic microbes in the guts of wood-and litter-feeding termites//Abe T, Bignell DE, Higashi M. Termites:Evolution, Sociality, Symbioses, Ecology. Dordrecht, Netherlands:Springer, 2000:209-301.
    [35] Liu N, Zhang L, Zhou HK, Zhang ML, Yan X, Wang Q, Long YH, Xie L, Wang SY, Huang YP, Zhou ZH. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis). PLoS ONE, 2013, 8(7):e69184.
    [36] Li H, Yelle DJ, Li C, Yang M, Ke J, Zhang R, Liu Y, Zhu N, Liang S, Mo X, Ralph J, Currie CR, Mo J. Lignocellulose pretreatment in a fungus-cultivating termite. Proceedings of the National Academy of Sciences of the United States of America, 2017, doi:10.1073/pnas.1618360114.
    [37] Sun JZ, Scharf ME. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Science, 2010, 17(3):163-165.
    [38] Jiang CY, Dong L, Zhao JK, Hu X, Shen C, Qiao Y, Zhang X, Wang Y, Ismagilov RF, Liu SJ, Du W. High-throughput Single-cell cultivation on microfluidic streak plates. Applied and Environmental Microbiology, 2016, 82(7):2210-2218.
    [39] Krishnan M, Bharathiraja C, Pandiarajan J, Prasanna VA, Rajendhran J, Gunasekaran P. Insect gut microbiome-an unexploited reserve for biotechnological application. Asian Pacific Journal of Tropical Biomedicine, 2014, 4(S1):S16-S21.
    引证文献
引用本文

李丹红,王誉,杨红. 高效降解木质纤维素的白蚁肠道微生物组[J]. 微生物学报, 2017, 57(6): 876-884

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-02-18
  • 最后修改日期:2017-04-07
  • 在线发布日期: 2017-05-27
文章二维码