甲烷菌对厌氧真菌不同碳源代谢的影响
作者:
基金项目:

国家自然科学基金(31301999);中央高校基本科研业务费自主创新重点研究项目(KYZ201412)


Effect of methanogens on carbon metabolism of anaerobic fungi
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]探讨碳源和甲烷菌对厌氧真菌碳代谢的影响。[方法]利用体外批次厌氧发酵法,比较厌氧真菌纯培养(Orpinomyces sp.和Neocallimastix sp.)及其与甲烷菌共培养(F1:Orpinomyces sp.+Methanobrevibacter sp.和N3:Neocallimastix sp.+Methanobrevibacter sp.)发酵不同类型碳水化合物代谢产物的差异。[结果]对厌氧真菌和甲烷菌共培养F1和N3的研究显示,F1发酵木薯粉[(26.44±0.22)mmol/L]的乳酸产量是发酵玉米芯[(1.31±0.04)mmol/L]的20.18倍,是N3发酵木薯粉[(1.59±0.03)mmol/L]的16.63倍,玉米芯[(0.79±0.08)mmol/L]的33.47倍。当F1和N3中的厌氧真菌纯培养时,各组乳酸产量均 <1.90 mmol/L。对F1进一步研究,结果显示发酵体系中木薯粉添加量在0.8%-2.0%之间时,乳酸产量随木薯粉添加量增加而增加。当含量在1.0%-2.4%之间时,随木薯粉添加量增加,甲烷和乙酸产量逐渐降低。比较F1发酵大米粉、木薯粉、玉米粉、小麦粉和土豆粉的发酵结果,发现乳酸产量与底物中支链淀粉的含量成正相关(R2=0.9554)。当F1发酵葡萄糖和麦芽糖时,乳酸产量 <5.00 mmol/L。当以麦芽糊精为底物时,乳酸产量高达(28.00±0.95)mmol/L。[结论]本文首次报道碳源和甲烷菌能够增强厌氧真菌的乳酸代谢途径并且这种增强存在种属特异性。

    Abstract:

    [Objective] To explore the effect of methanogens on the carbon metabolism of anaerobic fungi.[Methods] End-metabolites of different carbon sources by two anaerobic fungi (Orpinomyces sp. and Neocallimastix sp.) with or without co-culture methanogens (Methanobrevibacter sp.) were compared after 96 h in vitro anaerobic batch fermentation.[Results] Co-culture F1 (Orpinomyces sp. +Methanobrevibacter sp.) greatly enhanced the production of methane, acetate and lactate after corn core and cassava fermentation compared to pure fungal culture F1* (Orpinomyces sp.). In particular, lactate production by F1 reached (26.44±0.22) mmol/L when fermenting on cassava, 14 times more than those produced by F1*. On the contrast, co-culture N3 (Neocallimastix sp. + Methanobrevibacter sp.) showed lower level of lactate production after corn core and cassava fermentation compared to the pure fungal culture N3* (Neocallimastix sp.). In addition, lactate production varied greatly depending on the substrate amount and types of carbon. Lactate production by F1 showed an overall positive correlation with the amount of cassava, peaked (56.29±2.04) mmol/L when cassava amount was 2.0%. Besides, end-metabolites of five starch-rich materials fermented by F1 varied. In particular, there was a highly positive correlation (R2=0.9554) between lactate yields and the proportions of amylopectin of substrates. Further fermentation on pure sugars by F1 was performed. Polysaccharide (maltodextrin) produced substantially greater amount of lactate than monosaccharide (glucose) and disaccharide (maltose).[Conclusion] Co-culture of anaerobic fungi with methanogens shifted the fungal carbon metabolism during fermentation, which depended on the carbon sources and fungal species.

    参考文献
    [1] Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA. Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochemical Journal, 1986, 236(3):729-739.
    [2] Müller M. The hydrogenosome. Journal of General Microbiology, 1993, 139(12):2879-2889.
    [3] Boxma B, Voncken F, Jannink S, Van Alen T, Akhmanova A, van Weelden SWH, Van Hellemond JJ, Ricard G, Huynen M, Tielens AGM, Hackstein JHP. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Molecular Microbiology, 2004, 51(5):1389-1399.
    [4] Bauchop T, Mountfort DO. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Applied and Environmental Microbiology, 1981, 42(6):1103-1110.
    [5] 朱伟云. 瘤胃微生物//冯仰廉. 反刍动物营养学. 北京:科学出版社, 2004.
    [6] Hedderich R, Whitman WB. Physiology and biochemistry of the methane-producing archaea//Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E. The Prokaryotes. New York:Springer, 2006.
    [7] Jin W, Cheng YF, Mao SY, Zhu WY. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource Technology, 2011, 102(17):7925-7931.
    [8] Li YF, Jin W, Cheng YF, Zhu WY. Effect of the associated methanogen Methanobrevibacter thaueri on the dynamic Profile of end and intermediate metabolites of anaerobic fungus Piromyces sp. F1. Current Microbiology, 2016, 73(3):434-441.
    [9] Zhu WY, Mao SY, Wang QJ, Yao W, Theodorou MK. Study on the screening of anaerobic fungi by in vitro fermentation. Journal of Nanjing Agricultural University, 2001, 24(3):44-48. (in Chinese) 朱伟云, 毛胜勇, 王全军, 姚文, Theodorou MK. 厌氧真菌体外发酵筛选技术的研究. 南京农业大学学报, 2001, 24(3):44-48.
    [10] Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 1994, 48(3/4):185-197.
    [11] Hu WL, Wang JK, Lü JM, Guo YQ, Liu JX. Rapid gas chromatogram determination of methane, organic acid in in vitro ruminal fermentation products. Journal of Zhejiang University (Agriculture & Life Sciences), 2006, 32(2):217-221. (in Chinese) 胡伟莲, 王佳堃, 吕建敏, 郭嫣秋, 刘建新. 瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定. 浙江大学学报(农业与生命科学版), 2006, 32(2):217-221.
    [12] Hopner T, Knappe J. Formate determination with formate dehydrogenase//Bergmeyer HU. Methods of Enzymatic Analysis. New York:Academic Press, 1974.
    [13] Qin WL. Determination of rumen volatile fatty acids by means of gas chromatography. Journal of Nanjing Agricultural University, 1982, 5(4):110-116. (in Chinese) 秦为琳. 应用气相色谱测定瘤胃挥发性脂肪酸方法的研究改进. 南京农业大学学报, 1982, 5(4):110-116.
    [14] Edgardo A, Carolina P, Manuel R, Juanita F, Baeza J. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme and Microbial Technology, 2008, 43(2):120-123.
    [15] Marvin-Sikkema FD, Richardson AJ, Stewart CS, Gottschal JC, Prins RA. Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Applied and Environmental Microbiology, 1990, 56(12):3793-3797.
    [16] Teunissen MJ, Kets EPW, Op den Camp HJM, Huis in't Veld JHJ, Vogels GD. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Archives of Microbiology, 1992, 157(2):176-182.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

金巍,刘军花,李袁飞,成艳芬,朱伟云. 甲烷菌对厌氧真菌不同碳源代谢的影响[J]. 微生物学报, 2017, 57(7): 1106-1111

复制
分享
文章指标
  • 点击次数:864
  • 下载次数: 1734
  • HTML阅读次数: 978
  • 引用次数: 0
历史
  • 收稿日期:2016-11-03
  • 最后修改日期:2017-02-13
  • 在线发布日期: 2017-07-07
文章二维码