大肠杆菌NAD+合成关键酶的克隆表达及发酵优化
作者:
基金项目:

国家“863计划”(2015AA021004);国家自然科学基金(21336009,21176103);高等学校学科创新引智计划(111-2-06)


Cloning and expression of key enzymes for NAD+ synthesis and optimization of fermentation in Escherichia coli
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]烟酰胺腺嘌呤二核苷酸(NAD+)在细胞基因表达、氧化还原反应、能量代谢以及调控细胞生命周期中具有重要的作用,其细胞内含量是能量效率的关键因素。强化辅因子合成策略,获得高产NAD+菌株,对于NAD+依赖型氧化还原反应的速率和调节相关生化合成途径的代谢流具有重要意义。[方法]首先通过内源性调节,对代谢途径中的关键酶基因进行强化,过量表达和共表达NAD+合成途径中的关键酶基因pncB、nadDnadE;其次,通过外源调节增加NAD+前体物,优化诱导条件提高发酵过程中关键酶的表达量,增加NAD+的合成量;最后在单因素优化试验的基础上,以NAD+含量为响应值,采用Box-Bohnken试验设计方法,研究3个显著性影响因素相互作用对NAD+积累量的影响,确定最佳的优化条件。[结果]根据关键酶基因强化策略,构建了7株重组菌,其中重组菌E.coliBL21/pET-21a-nadE-pncB胞内NAD+含量相比初始菌株E.coli BL21/pET-21a提高了405.2%。通过对该菌株诱导条件和NAD+合成前体的优化,使用Design Expert 8.0分析实验数据,得出该重组菌株的最佳发酵条件为:诱导温度控制在15-20℃,OD600为0.6-0.8时添加IPTG 0.63 mmol/L、烟酸15.8 mg/L、诱导时长控制在24 h。NAD+含量在最优条件下实验验证值可达43.16 μmol/g DCW,与优化前相比提高了123.6%,与初始菌株相比提高了1029.8%。[结论]在大肠杆菌中共表达关键酶基因pncBnadE,胞内NAD+合成量明显增加,前体物以及诱导条件的外源调节使NAD+积累量达到最佳优化值。实现了提高NAD+含量的目标,胞内辅因子浓度的增加为提高生物催化效率奠定了可行性基础。

    Abstract:

    [Objective] Nicotinamide adenine dinucleotide (NAD+) plays a crucial role in controlling metabolism network. Improving its intracellular concentration or getting a high-NAD+-yield strain is of great significance for NAD+-dependent redox reaction rate.[Methods] First, we used endogenous regulation means to enhance the key genes of NAD+ synthesis pathway, such as over-expressing and co-expressing the key enzyme genes pncB, nadD and nadE. Second, we optimized NAD+ precursors supplement and fermentation conditions to increase NAD+ synthesis. Finally, we used Box-Bohnken method for optimal synthesis condition by 3 significant factors' interaction based on single-factor experiments and the response value of NAD+ content.[Results] According to different expression strategies, we constructed seven recombinant strains. Besides, the intracellular NAD+ content of the recombinant strain E. coli BL21/pET-21a-nadE-pncB was 405.2% higher than that of the original strain. Moreover, after optimization of induction conditions and NAD+ precursor concentration by Design Expert 8.0, NAD+ content reached 43.16 μmol/g DCW, 123.6% higher than that before optimization and 1029.8% higher than the original strain.[Conclusion] Co-expression the key enzyme genes pncB and nadE are essential to improve NAD+ synthesis. The recombinant strain with high NAD+ provides the feasibility to improve biocatalytic efficiency.

    参考文献
    [1] Bakker BM, Overkamp KM, van Maris AJA, Kötter P, Luttik MAH, van Dijken JP, Pronk JT. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2001, 25(1):15-37.
    [2] Berríos-Rivera SJ, Bennett GN, San KY. Metabolic engineering of Escherichia coli:increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metabolic Engineering, 2002, 4(3):217-229.
    [3] San KY, Bennett GN, Berrıos-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K. Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metabolic Engineering, 2002, 4(2):182-192.
    [4] Sánchez AM, Bennett GN, San KY. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Journal of Biotechnology, 2005, 117(4):395-405.
    [5] Heux S, Cachon R, Dequin S. Cofactor engineering in Saccharomyces cerevisiae:expression of a HO2-forming NADH oxidase and impact on redox metabolism. Metabolic Engineering, 2006, 8(4):303-314.
    [6] Vemuri GN, Altman E, Sangurdekar DP, Khodursky AB, Eiteman MA. Overflow metabolism in Escherichia coli during steady-state growth:transcriptional regulation and effect of the redox ratio. Applied and Environmental Microbiology, 2006, 72(5):3653-3661.
    [7] Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. Journal of Bacteriology, 2002, 184(14):3909-3916.
    [8] Liu LM, Li Y, Shi ZP, Du GC, Chen J. Enhancement of pyruvate productivity in Torulopsis glabrata:increase of NAD+ availability. Journal of Biotechnology, 2006, 126(2):173-185.
    [9] 杨兴龙. 共表达亮氨酸脱氢酶与葡萄糖脱氢酶不对称合成光学纯L-叔亮氨酸. 江南大学学位论文, 2016.
    [10] Wu XR, Jiang JP, Chen YJ. Correlation between intracellular cofactor concentrations and biocatalytic efficiency:coexpression of diketoreductase and glucose dehydrogenase for the preparation of chiral diol for statin drugs. ACS Catalysis, 2011, 1(12):1661-1664.
    [11] Berríos-Rivera SJ, San KY, Bennett GN. The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metabolic Engineering, 2002, 4(3):238-247.
    [12] Gou DM, Liang LY, Liu RM, Zhang CQ, Wu MK, Ma JF, Chen KQ, Zhu JG, Jiang M. Effect of overexpression of nicotinic acid mononucleotide adenylyltransferase on succinic acid production in Escherichia coli NZN111. Chinese Journal of Biotechnology, 2012, 28(9):1059-1069. (in Chinese) 苟冬梅, 梁丽亚, 刘嵘明, 张常青, 吴明科, 马江锋, 陈可泉, 朱建国, 姜岷. 过量表达烟酸单核苷酸腺苷酰转移酶对大肠杆菌NZN111产丁二酸的影响. 生物工程学报, 2012, 28(9):1059-1069.
    [13] Jiang JP, Wu XR, Chen YJ. Strategy to solve cofactor issues in oxidoreductase catalyzed biocatalytic applications. Chinese Journal of Biotechnology, 2012, 28(4):410-419. (in Chinese) 江金鹏, 吴旭日, 陈依军. 解决氧化还原酶反应体系中辅酶问题的策略及其应用. 生物工程学报, 2012, 28(4):410-419.
    [14] Wang CH, Li YY, Chen CH, Li X. Effects of temperature on the kinetics and level of energy charge and oxidation-reduction state in pyruvate biosynthesis. Chinese Journal of Biotechnology, 2006, 22(2):316-321. (in Chinese) 王翠华, 李友元, 陈长华, 李啸. 温度对丙酮酸生物合成动力学、能荷和氧化-还原度的影响. 生物工程学报, 2006, 22(2):316-321.
    [15] Vinitsky A, Grubmeyer C. A new paradigm for biochemical energy coupling. Salmonella typhimurium nicotinate phosphoribosyltransferase. The Journal of Biological Chemistry, 1993, 268(34):26004-26010.
    [16] Li J, Chen KQ, Huang XM, Yang ZN, Jiang M, Wei P. Establishment of the determination of NAD+ and NADH in the anaerobic fermentation of organic acids. Food Science and Technology, 2008, 33(12):254-257. 李建, 陈可泉, 黄秀梅, 杨卓娜, 姜岷, 韦萍. 厌氧发酵有机酸体系中NAD+和NADH测定方法的建立. 食品科技, 2008, 33(12):254-257.
    [17] Gibon Y, Larher F. Cycling assay for nicotinamide adenine dinucleotides:NaCl precipitation and ethanol solubilization of the reduced tetrazolium. Analytical Biochemistry, 1997, 251(2):153-157.
    [18] Sestini S, Jacomelli G, Pescaglini M, Micheli V, Pompucci G. Enzyme activities leading to NAD synthesis in human lymphocytes. Archives of Biochemistry and Biophysics, 2000, 379(2):277-282.
    [19] Yamada K, Hara N, Shibata T, Osago H, Tsuchiya M. The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Analytical Biochemistry, 2006, 352(2):282-285.
    [20] Al-Abady ZN, Durante B, Moody AJ, Billington RA. Large changes in NAD levels associated with CD38 expression during HL-60 cell differentiation. Biochemical and Biophysical Research Communications, 2013, 442(1/2):51-55.
    [21] Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9):2905-2915.
    [22] Dong WR, Sun CC, Zhu G, Hu SH, Xiang LX, Shao JZ. New function for Escherichia coli xanthosine phophorylase (xapA):genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide. BMC Microbiology, 2014, 14:29.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

施慧,穆晓清,杨兴龙,战绍斌,田荣臻,聂尧,徐岩. 大肠杆菌NAD+合成关键酶的克隆表达及发酵优化[J]. 微生物学报, 2017, 57(7): 1112-1125

复制
分享
文章指标
  • 点击次数:1107
  • 下载次数: 2698
  • HTML阅读次数: 1020
  • 引用次数: 0
历史
  • 收稿日期:2016-11-04
  • 最后修改日期:2016-12-21
  • 在线发布日期: 2017-07-07
文章二维码