The glmS ribozyme is predominantly present in gram-positive bacteria, and it is a riboswitch that inhibits the synthesis of glucosamine-6-phosphate. In addition, glmS riboswitch is a self-cleft ribozyme located in the 5' untranslated region of the glmS gene. Study on the structure and function of glmS riboswitch will be beneficial to develop new targets for antibiotic action. In this paper, we reviewed the structure and function of glmS riboswitch. In addition, we also introduce recent research progress and application of glmS riboswitch.
[1] Machtel P, Bąkowska-Żywicka K, Żywicki M. Emerging applications of riboswitches-from antibacterial targets to molecular tools. Journal of Applied Genetics, 2016, 57(4):531-541.
[2] Cho S, Lee BR, Cho BK, Kim JH, Kim BG. In vitro selection of sialic acid specific RNA aptamer and its application to the rapid sensing of sialic acid modified sugars. Biotechnology and Bioengineering, 2013, 110(3):905-913.
[3] Wang JM, Gao DF, Yu XL, Li W, Qi QS. Evolution of a chimeric aspartate kinase for L-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20):8527-8536.
[4] Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Control of gene expression by a natural metabolite-responsive ribozyme. Nature, 2004, 428(6980):281-286.
[5] Nudler E, Mironov AS. The riboswitch control of bacterial metabolism. Trends in Biochemical Sciences, 2004, 29(1):11-17.
[6] Soukup GA. Core requirements for glmS ribozyme self-cleavage reveal a putative pseudoknot structure. Nucleic Acids Research, 2006, 34(3):968-975.
[7] Hull CM, Anmangandla A, Bevilacqua PC. Bacterial riboswitches and ribozymes potently activate the human innate immune sensor PKR. ACS Chemical Biology, 2016, 11(4):1118-1127.
[8] Hampel KJ, Tinsley MM. Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry, 2006, 45(25):7861-7871.
[9] Klein DJ, Ferré-D'Amaré AR. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science, 2006, 313(5794):1752-1756.
[10] Klein DJ, Been MD, Ferré-D'Amaré AR. Essential role of an active-site guanine in glmS ribozyme catalysis. Journal of the American Chemical Society, 2007, 129(48):14858-14859.
[11] Cochrane JC, Lipchock SV, Smith KD, Strobel SA. Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry, 2009, 48(15):3239-3246.
[12] Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17):6421-6426.
[13] Zhang SX, Ganguly A, Goyal P, Bingaman JL, Bevilacqua PC, Hammes-Schiffer S. Role of the active site guanine in the glmS ribozyme self-cleavage mechanism:quantum mechanical/molecular mechanical free energy simulations. Journal of the American Chemical Society, 2015, 137(2):784-798.
[14] Milewski S. Glucosamine-6-phosphate synthase——the multi-facets enzyme. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 2002, 1597(2):173-192.
[15] Dong X, Tian ZY, Yang X, Xue Y. Theoretical study on the mechanism of self-cleavage reaction of the glmS ribozyme. Theoretical Chemistry Accounts, 2015, 134(5):68.
[17] Collins JA, Irnov I, Baker S, Winkler WC. Mechanism of mRNA destabilization by the glmS ribozyme. Genes & Development, 2007, 21(24):3356-3368.
[18] Ferré-D'Amaré AR, Doudna JA. RNA folds:insights from recent crystal structures. Annual Review of Biophysics and Biomolecular Structure, 1999, 28(1):57-73.
[19] Link KH, Guo LX, Breaker RR. Examination of the structural and functional versatility of glmS ribozymes by using in vitro selection. Nucleic Acids Research, 2006, 34(17):4968-4975.
[20] Lau MWL, Ferré-D'Amaré AR. An in vitro evolved glmS ribozyme has the wild-type fold but loses coenzyme dependence. Nature Chemical Biology, 2013, 9(12):805-810.
[21] Dixon N, Duncan JN, Geerlings T, Dunstan MS, McCarthy JEG, Leys D, Micklefield J. Reengineering orthogonally selective riboswitches. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(7):2830-2835.
[22] Lau MWL, Ferré-D'Amaré AR. In vitro evolution of coenzyme-independent variants from the glmS ribozyme structural scaffold. Methods, 2016, 106:76-81.
[23] Pitt JN, Ferré-D'Amaré AR. Rapid construction of empirical RNA fitness landscapes. Science, 2010, 330(6002):376-379.
[24] Zhang SX, Stevens DR, Goyal P, Bingaman JL, Bevilacqua PC, Hammes-Schiffer S. Assessing the potential effects of active site Mg2+ ions in the glmS ribozyme-cofactor complex. The Journal of Physical Chemistry Letters, 2016, 7(19):3984-3988.
[25] Klawuhn K, Jansen JA, Souchek J, Soukup GA, Soukup JK.Analysis of metal ion dependence in glmS ribozyme self-cleavage and coenzyme binding. Chembiochem, 2010, 11(18):2567-2571.
[26] Brooks KM, Hampel KJ. Rapid steps in the glmS ribozyme catalytic pathway:cation and ligand requirements. Biochemistry, 2011, 50(13):2424-2433.
[27] Mir A, Golden BL. Two active site divalent ions in the crystal structure of the hammerhead ribozyme bound to a transition state analogue. Biochemistry, 2016, 55(4):633-636.
[28] Dubecký M, Walter NG, Šponer J, Otyepka M, Banáš P. Chemical feasibility of the general acid/base mechanism of glmS ribozyme self-cleavage. Biopolymers, 2015, 103(10):550-562.
[29] Schüller A, Matzner D, Lünse CE, Wittmann V, Schumacher C, Unsleber S, Brötz-Oesterhelt H, Mayer C, Bierbaum G, Mayer G. Activation of the glmS ribozyme confers bacterial growth inhibition. Chembiochem, 2017, 18(5):435-440.
[30] Xin Y, Hamelberg D. Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA, 2010, 16(12):2455-2463.
[31] Bingaman JL, Zhang SX, Stevens DR, Yennawar NH, Hammes-Schiffer S, Bevilacqua PC. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. Nature Chemical Biology, 2017, 13(4):439-445.
[32] McCown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. RNA, 2011, 17(4):728-736.
[33] Lünse CE, Schmidt MS, Wittmann V, Mayer G. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chemical Biology, 2011, 6(7):675-678.
[34] Lim J, Grove BC, Roth A, Breaker RR. Characteristics of ligand recognition by a glmS self-cleaving ribozyme. Angewandte Chemie International Edition, 2006, 45(40):6689-6693.