微生物嗜盐酶的研究进展
作者:
基金项目:

国家自然科学基金(31670069,31170068)


Advances in microbial halophilic enzy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    嗜盐酶一般来自于嗜盐菌,它的主要特点是严格依赖体系中一定的盐离子浓度,可以在高盐环境中维持其结构稳定,并且能够抵抗高温、pH和有机溶剂存在下的变性,因此在高盐、水/有机和非水介质环境的催化中具有重要的应用价值。本综述从盐对嗜盐酶活性和稳定性的影响、金属离子和有机溶剂对嗜盐酶的影响几个方面介绍了嗜盐酶的特点。在总结蛋白质数据库(PDB)中已有嗜盐酶的结构和特点的基础上,对嗜盐酶的嗜盐机制进行了分析,认为嗜盐酶不同于非嗜盐酶的特点在于盐桥和氢键明显增多,含有一些特殊的盐离子结合位点并且常以低聚体的形式存在,表面酸性氨基酸含量明显增多。最后对嗜盐酶的分子改造和应用进行了简要的介绍。

    Abstract:

    Halophilic enzymes are derived naturally from halophilic bacteria that survive in high salt environment, as it can maintain the structural stability of the enzyme only in high salt environment. These enzymes can withstand high temperature, pH and organic solvents, so they can be widely used for their catalytic activity in high salt, water/organic and non-aqueous environment. In this review, we address the effect of salt on the activity and stability of halophilic enzymes, and the role of metal ions and organic solvents on the halophilic enzymes. In addition, molecular modification and the application of halophilic enzymes were introduced.

    参考文献
    [1] Pundak S, Eisenberg H. Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea:1. conformation and interaction with water and salt between 5 M and 1 M NaCl concentration. European Journal of Biochemistry, 1981, 118(3):463-470.
    [2] Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. Journal of Molecular Biology, 2002, 323(2):327-344.
    [3] Souza TACB, Okamoto DN, Ruiz DM, Oliveira LCG, Kondo MY, Tersario ILS, Juliano L, De Castro RE, Gouvea IE, Murakami MT. Correlation between catalysis and tertiary structure arrangement in an archaeal halophilic subtilase. Biochimie, 2012, 94(3):798-805.
    [4] Holmes ML, Scopes RK, Moritz RL, Simpson RJ, Englert C, Pfeifer F, Dyall-Smith ML. Purification and analysis of an extremely halophilic β-galactosidase from Haloferax alicantei. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1997, 1337(2):276-286.
    [5] Zhang GM, Li SY, Xue YF, Mao LW, Ma YH. Effects of salts on activity of halophilic cellulase with glucomannanase activity isolated from alkaliphilic and halophilic Bacillus sp. BG-CS10. Extremophiles, 2012, 16(1):35-43.
    [6] Miyashita Y, Ohmae E, Nakasone K, Katayanagi K. Effects of salt on the structure, stability, and function of a halophilic dihydrofolate reductase from a hyperhalophilic archaeon, Haloarcula japonica strain TR-1. Extremophiles, 2015, 19(2):479-493.
    [7] Bischoff KM, Rodwell VW. 3-hydroxy-3-methylglutarylcoenzyme A reductase from Haloferax volcanii:purification, characterization, and expression in Escherichia coli. Journal of Bacteriology, 1996, 178(1):19-23.
    [8] Madern D, Ebel C. Influence of an anion-binding site in the stabilization of halophilic malate dehydrogenase from Haloarcula marismortui. Biochimie, 2007, 89(8):981-987.
    [9] Ohshida T, Hayashi J, Satomura T, Kawakami R, Ohshima T, Sakuraba H. First characterization of extremely halophilic 2-deoxy-D-ribose-5-phosphate aldolase. Protein Expression and Purification, 2016, 126:62-68.
    [10] Sivakumar N, Li N, Tang JW, Patel BKC, Swaminathan K. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Letters, 2006, 580(11):2646-2652.
    [11] Sinha R, Khare SK. Effect of organic solvents on the structure and activity of moderately halophilic Bacillus sp. EMB9 protease. Extremophiles, 2014, 18(6):1057-1066.
    [12] Alsafadi D, Paradisi F. Effect of organic solvents on the activity and stability of halophilic alcohol dehydrogenase (ADH2) from Haloferax volcanii. Extremophiles, 2013, 17(1):115-122.
    [13] Karan R, Khare SK. Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry (Moscow), 2011, 76(6):686-693.
    [14] Gao RC, Shi T, Liu XD, Zhao MQ, Cui HL, Yuan L. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum. Journal of the Science of Food and Agriculture, 2017, 97(5):1412-1419.
    [15] Sandomenico A, Leonardi A, Berisio R, Sanguigno L, Focà G, Focà A, Ruggiero A, Doti N, Muscariello L, Barone D, Farina C, Owsianka A, Vitagliano L, Patelf AH, Ruvo M. Generation and characterization of monoclonal antibodies against a cyclic variant of hepatitis c virus E2 epitope 412-422. Journal of Virology, 2016, 90(7):3745-3759.
    [16] Warden AC, Williams M, Peat TS, Seabrook SA, Newman J, Dojchinov G, Haritos VS. Rational engineering of a mesohalophilic carbonic anhydrase to an extreme halotolerant biocatalyst. Nature Communications, 2015, 6:10278.
    [17] Premkumar L, Greenblatt HM, Bageshwar UK, Savchenko T, Gokhman I, Sussman JL, Zamir A. Three-dimensional structure of a halotolerant algal carbonic anhydrase predicts halotolerance of a mammalian homolog. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(21):7493-7498.
    [18] Somalinga V, Buhrman G, Arun A, Rose RB, Grunden AM. A high-resolution crystal structure of a psychrohalophilic α-carbonic anhydrase from Photobacterium profundum reveals a unique dimer interface. PLoS One, 2016, 11(12):e0168022.
    [19] Arai S, Yonezawa Y, Ishibashi M, Matsumoto F, Adachi M,Tamada T, Tokunaga H, Blaber M, Tokunaga M, Kuroki R. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593. Acta Crystallographica Section D-Biological Crystallography, 2014, 70(3):811-820.
    [20] Talon R, Coquelle N, Madern D, Girard E. An experimental point of view on hydration/solvation in halophilic proteins. Frontiers in Microbiology, 2014, 5:66.
    [21] Yamamura A, Ichimura T, Kamekura M, Mizuki T, Usami R, Makino T, Ohtsuka J, Miyazono KI, Okai M, Nagata K, Tanokura M. Molecular mechanism of distinct salt-dependent enzyme activity of two halophilic nucleoside diphosphate kinases. Biophysical Journal, 2009, 96(11):4692-4700.
    [22] Arai S, Yonezawa Y, Okazaki N, Matsumoto F, Tamada T, Tokunaga H, Ishibashi M, Blaber M, Tokunaga M, Kuroki R. A structural mechanism for dimeric to tetrameric oligomer conversion in Halomonas sp. nucleoside diphosphate kinase. Protein Science, 2012, 21:498-510.
    [23] Bracken CD, Neighbor AM, Lamlenn KK, Thomas GC, Schubert HL, Whitby FG, Howard BR. Crystal structures of a halophilic archaeal malate synthase from Haloferax volcanii and comparisons with isoforms A and G. BMC Structural Biology, 2011, 11(1):23.
    [24] Altermark B, Helland R, Moe E, Willassen NP, Smalås AO. Structural adaptation of endonuclease I from the cold-adapted and halophilic bacterium Vibrio salmonicida. Acta Crystallographica Section D-Biological Crystallography, 2008, 64(4):368-376.
    [25] Tan TC, Mijts BN, Swaminathan K, Patel BKC, Divne C. Crystal structure of the polyextremophilic α-amylase AmyB from Halothermothrix orenii:details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Journal of Molecular Biology, 2008, 378(4):852-870.
    [26] Binbuga B, Boroujerdi AFB, Young JK. Structure in an extreme environment:NMR at high salt. Protein Science, 2007, 16(8):1783-1787.
    [27] Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engström Å, Sandgren M, Beckham GT, Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. Journal of Biological Chemistry, 2013, 288(8):5861-5872.
    [28] Britton KL, Stillman TJ, Yip KSP, Forterre P, Engel PC, Rice DW. Insights into the molecular basis of salt tolerance from the study of glutamate dehydrogenase from Halobacterium salinarum. Journal of Biological Chemistry, 1998, 273(15):9023-9030.
    [29] Jolley KA, Russell RJM, Hough DW, Danson MJ. Site-directed metagenesis and halophilicity of dihydrolipoamide dehydrogenase from the halophilic archaeon, Haloferax volcanii. European Journal of Biochemistry, 1997, 248(2):362-368.
    [30] Mevarech M, Frolow F, Gloss LM. Halophilic enzymes:proteins with a grain of salt. Biophysical Chemistry, 2000, 86(2/3):155-164.
    [31] Evilia C, Hou YM. Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase. Biochemistry, 2006, 45(22):6835-6845.
    [32] Ishibashi M, Hayashi T, Yoshida C, Tokunaga M. Increase of salt dependence of halophilic nucleoside diphosphate kinase caused by a single amino acid substitution. Extremophiles, 2013, 17(4):585-591.
    [33] Chakraborty K, Paulraj R. Enrichment of eicosapentaenoic acid from sardine oil with Δ5-olefinic bond specific lipase from Bacillus licheniformis MTCC 6824. Journal of Agricultural and Food Chemistry, 2008, 56(4):1428-1433.
    [34] Kim J, Dordick JS. Unusual salt and solvent dependence of a protease from an extreme halophile. Biotechnology and Bioengineering, 1997, 55(3):471-479.
    [35] Kamekura M, Onishi H. Properties of the halophilic nuclease of a moderate halophile, Micrococcus varians subsp. halophilus. Journal of Bacteriology, 1978, 133(1):59-65.
    [36] Stosz SK, Weiner RM, Coyne VE. Agarase enzyme system from Alteromonas strain 2-40. United States Patent:5418156, 1995-05-23.
    [37] Gunny AAN, Arbain D, Jamal P, Gumba RE. Improvement of halophilic cellulase production from locally isolated fungal strain. Saudi Journal of Biological Sciences, 2015, 22(4):476-483.
    [38] Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R. Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles, 2005, 9(1):85-89.
    [39] Kirk O, Christensen MW. Lipases from Candida antarctica:Unique biocatalysts from a unique origin. Organic Process Research & Development, 2002, 6(4):446-451.
    [40] Gupta A, Roy I, Khare SK, Gupta MN. Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. Journal of Chromatography A, 2005, 1069(2):155-161.
    [41] Wang K, Li G, Yu SQ, Zhang CT, Liu YH. A novel metagenome-derived β-galactosidase:gene cloning, overexpression, purification and characterization. Applied Microbiology and Biotechnology, 2010, 88(1):155-165.
    [42] Essghaier B, Hedi A, Bejji M, Jijakli H, Boudabous A, Sadfi-Zouaoui N. Characterization of a novel chitinase from a moderately halophilic bacterium, Virgibacillus marismortui strain M3-23. Annals of Microbiology, 2011, 62(2):835-841.
    [43] Kosjek B, Stampfer W, Pogorevc M, Goessler W, Faber K, Kroutil W. Purification and characterization of a chemotolerant alcohol dehydrogenase applicable to coupled redox reactions. Biotechnology and Bioengineering, 2004, 86(1):55-62.
    [44] Kobori H, Sullivan CW, Shizuya H. Heat-labile alkaline phosphatase from Antarctic bacteria:Rapid 5' end-labeling of nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(21):6691-6695.
    [45] Hildebrandt P, Wanarska M, Kur J. A new cold-adapted β-D-galactosidase from the Antarctic Arthrobacter sp. 32c-gene cloning, overexpression, purification and properties. BMC Microbiology, 2009, 9(1):151.
    [46] Yoshimune K, Shirakihara Y, Wakayama M, Yumoto I. Crystal structure of salt-tolerant glutaminase from Micrococcus luteus K-3 in the presence and absence of its product L-glutamate and its activator Tris. The FEBS Journal, 2010, 277:738-748.
    [47] Doukyu N, Aono R. Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. strain ST-200. Applied and Environmental Micriobiology, 1998, 64(5):1929-1932.
    [48] Al Khudary R, Venkatachalam R, Katzer M, Elleuche S, Antranikian G. A cold-adapted esterase of a novel marine isolate, Pseudoalteromonas arctica:gene cloning, enzyme purification and characterization. Extremophiles, 2010, 14(3):273-285.
    [49] Lo Giudice A, Michaud L, de Pascale D, De Domenico M, Di Prisco G, Fani R, Bruni V. Lipolytic activity of Antarctic cold-adapted marine bacteria (Terra Nova Bay, Ross Sea). Journal of Applied Microbiology, 2006, 101(5):1039-1048.
    [50] Pérez D, Martín S, Fernández-Lorente G, Filice M, Guisán JM, Ventosa A, García MT, Mellado E. A novel halophilic lipase, LipBL, showing high efficiency in the production of eicosapentaenoic acid (EPA). PLoS One, 2011, 6(8):e23325.
    [51] Kamekura M, Hamakawa T, Onishi H. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5'-GMP. Applied and Environmental Micriobiology, 1982, 44(4):994-995.
    [52] Van Truong L, Tuyen H, Helmke E, Binh LT, Schweder T. Cloning of two pectate lyase genes from the marine Antarctic bacterium Pseudoalteromonas haloplanktis strain ANT/505 and characterization of the enzymes. Extremophiles, 2001, 5(1):35-44.
    [53] Waditee-Sirisattha R, Kageyama H, Tanaka Y, Fukaya M, Takabe T. Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. Archives of Microbiology, 2017, 199(1):29-35.
    [54] Bridiau N, Issaoui N, Maugard T. The effects of organic solvents on the efficiency and regioselectivity of N-acetyl-lactosamine synthesis, using the β-galactosidase from Bacillus circulans in hydro-organic media. Biotechnology Progress, 2010, 26(5):1278-1289.
    [55] Wang SH, Huang KJ, Zhang G. Halophilic mechanism of the halophilic enzymes based on the molecule dynameomics method. Journal of Huaqiao University (Natural Science), 2013, 34(2):169-175. (in Chinese)王四华, 黄可君, 张光. 以分子动力组学的方法探究嗜盐酶的嗜盐机理. 华侨大学学报(自然科学版), 2013, 34(2):169-175.
    [56] Li JL, Yang Y, Wu H, Tang HC, Wei YT. Escherichia coli Halophilic alpha amylase gene molecular modification and enzymology characteristics. Guangxi Sciences, 2016, 23(1):25-30. (in Chinese)李剑龙, 杨媛, 吴昊, 汤宏赤, 韦宇拓. 大肠杆菌嗜盐α-淀粉酶基因的分子改造及其酶学特性. 广西科学, 2016, 23(1):25-30.
引用本文

石云云,李信志,张桂敏. 微生物嗜盐酶的研究进展[J]. 微生物学报, 2017, 57(8): 1180-1188

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-29
  • 最后修改日期:2017-05-17
  • 在线发布日期: 2017-08-10
文章二维码