白色念珠菌生物被膜研究进展
作者:
基金项目:

国家自然科学基金(31670809)


Recent progress in Candida albicans biofilm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [73]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。

    Abstract:

    Biofilms have been associated with a variety of persistent fungal infections that respond poorly to conventional treatments. Forming biofilm could help fungi escape from host immune system defense and antimicrobial treatment. Fungal biofilms have emerged as a clinical problem associated with persistent infections, causing significant morbidity and mortality. Candida albicans is the most common fungal pathogen in humans, causing mucosal infections as well as life-threatening systemic infections. Biofilm of Candida albicans has been relatively well studied among fungal pathogens. Recent studies show that the extracellular matrix of Candida albicans biofilm consists of proteins, DNA and polysaccharides. Moreover, quorum sensing, environmental nutrition and surface materials affect the formation of Candida albicans biofilms. Other studies reveal that physical barrier function of the extracellular matrix, specific genetic manipulation and other mechanisms might contribute to the drug-resistance of fungal biofilms. This review discusses the recent advances in the understanding of Candida albicans biofilms, including the formation process, structural components, factors of formation, research models, drug-resistance mechanisms and potential treatment strategies.

    参考文献
    [1] Williams C, Ramage G. Fungal biofilms in human disease. Advances in Experimental Medicine and Biology, 2015, 831:11-27.
    [2] Naglik JR, Richardson JP, Moyes DL. Candida albicans pathogenicity and epithelial immunity. PLoS Pathogens, 2014, 10(8):e1004257.
    [3] Sanguinetti M, Posteraro B, Lass-Flörl C. Antifungal drug resistance among Candida species:mechanisms and clinical impact. Mycoses, 2015, 58(S2):2-13.
    [4] Hassan I, Powell G, Sidhu M, Hart WM, Denning DW. Excess mortality, length of stay and cost attributable to candidaemia. Journal of Infection, 2009, 59(5):360-365.
    [5] Taff HT, Mitchell KF, Edward JA, Andes DR. Mechanisms of Candida biofilm drug resistance. Future Microbiology, 2013, 8(10):1325-1337.
    [6] Donlan RM, Costerton JW. Biofilms:survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 2002, 15(2):167-193.
    [7] Chandra J, Mukherjee PK. Candida biofilms:development, architecture, and resistance. Microbiology Spectrum, 2015, 3(4), doi:10.1128/microbiolspec.MB-0020-2015.
    [8] Al-Fattani MA, Douglas LJ. Biofilm matrix of Candida albicans and Candida tropicalis:chemical composition and role in drug resistance. Journal of Medical Microbiology, 2006, 55(8):999-1008.
    [9] Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Sahraoui ALH, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. Novel entries in a fungal biofilm matrix encyclopedia. mBio, 2014, 5(4):e01333-14.
    [10] Mitchell KF, Zarnowski R, Sanchez H, Edward JA, Reinicke EL, Nett JE, Mitchell AP, Andes DR. Community participation in biofilm matrix assembly and function. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(13):4092-4097.
    [11] Sheppard DC, Howell PL. Biofilm exopolysaccharides of pathogenic fungi:lessons from bacteria. Journal of Biological Chemistry, 2016, 291(24):12529-12537.
    [12] Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J. (1→3)-α-D-Glucan hydrolases in dental biofilm prevention and control:a review. International Journal of Biological Macromolecules, 2015, 79:761-778.
    [13] Lal P, Sharma D, Pruthi P, Pruthi V. Exopolysaccharide analysis of biofilm-forming Candida albicans. Journal of Applied Microbiology, 2009, 109(1):128-136.
    [14] Nett J, Lincoln L, Marchillo K, Massey R, Holoyda K, Hoff B, VanHandel M, Andes D. Putative role of β-1,3 glucans in Candida albicans biofilm resistance. Antimicrobial Agents and Chemotherapy, 2007, 51(2):510-520.
    [15] Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR. A Candida biofilm-induced pathway for matrix glucan delivery:implications for drug resistance. PLoS Pathogens, 2012, 8(8):e1002848.
    [16] Martins M, Uppuluri P, Thomas DP, Cleary IA, Henriques M, Lopez-Ribot JL, Oliveira R. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms. Mycopathologia, 2010, 169(5):323-331.
    [17] Sapaar B, Nur A, Hirota K, Yumoto H, Murakami K, Amoh T, Matsuo T, Ichikawa T, Miyake Y. Effects of extracellular DNA from Candida albicans and pneumonia-related pathogens on Candida biofilm formation and hyphal transformation.Journal of Applied Microbiology, 2014, 116(6):1531-1542.
    [18] Nobile CJ, Nett JE, Andes DR, Mitchell AP. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryotic Cell, 2006, 5(10):1604-1610.
    [19] Nobile CJ, Andes DR, Nett JE, Smith FJ Jr, Yue F, Phan QT, Edwards JE Jr, Filler SG, Mitchell AP. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathogens, 2006, 2(7):e63.
    [20] Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh D. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Molecular Biology of the Cell, 2008, 19(4):1354-1365.
    [21] Chen XY, Zhang RY, Takada A, Iwatani S, Oka C, Kitamoto T, Kajiwara S. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans. Mycoses, 2017, 60(2):96-103.
    [22] Dongari-Bagtzoglou A, Kashleva H, Dwivedi P, Diaz P, Vasilakos J. Characterization of mucosal Candida albicans biofilms. PLoS One, 2009, 4(11):e7967.
    [23] Pereira-Cenci T, Del Bel Cury AA, Crielaard Ⅲ W, Cate Ⅲ JMT. Development of Candida-associated denture stomatitis:new insights. Journal of Applied Oral Science, 2008, 16(2):86-94.
    [24] Chandra J, Patel JD, Li J, Zhou GY, Mukherjee PK, McCormick TS, Anderson JM, Ghannoum MA. Modification of surface properties of biomaterials influences the ability of Candida albicans to form biofilms. Applied and Environmental Microbiology, 2005, 71(12):8795-8801.
    [25] Martinez LR, Casadevall A. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Applied and Environmental Microbiology, 2007, 73(14):4592-4601.
    [26] Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infection and Immunity, 2004, 72(10):6023-6031.
    [27] Swindell K, Lattif AA, Chandra J, Mukherjee PK, Ghannoum MA. Parenteral lipid emulsion induces germination of Candida albicans and increases biofilm formation on medical catheter surfaces. The Journal of Infectious Diseases, 2009, 200(3):473-480.
    [28] Samaranayake YH, Cheung BPK, Yau JYY, Yeung SKW, Samaranayake LP. Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One, 2013, 8(5):e62902.
    [29] Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Applied and Environmental Microbiology, 2001, 67(7):2982-2992.
    [30] Yu LH, Wei X, Ma M, Chen XJ, Xu SB. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrobial Agents and Chemotherapy, 2012, 56(2):770-775.
    [31] Chen H, Fujita M, Feng QH, Clardy J, Fink GR. Tyrosol is a quorum-sensing molecule in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(14):5048-5052.
    [32] Chen H, Fink GR. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes & Development, 2006, 20(9):1150-1161.
    [33] Deveau A, Hogan DA. Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods in Molecular Biology, 2011, 692:219-233.
    [34] Davis HA, Piispanen AE, Stateva LI, Hogan DA. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Molecular Microbiology, 2008, 67(1):47-62.
    [35] Rde AC, Teixeira CE, Brilhante RS, Castelo-Branco DS, Alencar LP, de Oliveira JS, Monteiro AJ, Bandeira TJ, Sidrim JJ, Moreira JL, Rocha MF. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Research, 2015, 15(4):fov012.
    [36] Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrobial Agents and Chemotherapy, 2005, 49(2):584-589.
    [37] Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infection and Immunity, 1994, 62(3):915-921.
    [38] Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. Journal of Dental Research, 2001, 80(3):903-908.
    [39] Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans:development, architecture, and drug resistance. Journal of Bacteriology, 2001, 183(18):5385-5394.
    [40] Mukherjee PK, Chand DV, Chandra J, Anderson JM, Ghannoum MA. Shear stress modulates the thickness and architecture of Candida albicans biofilms in a phase-dependent manner. Mycoses, 2009, 52(5):440-446.
    [41] Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infection and Immunity, 2002, 70(2):878-888.
    [42] Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot JL. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 2008, 3(9):1494-1500.
    [43] Almshawit H, Macreadie I, Grando D. A simple and inexpensive device for biofilm analysis. Journal of Microbiological Methods, 2014, 98:59-63.
    [44] Harrison JJ, Ceri H, Yerly J, Rabiei M, Hu YP, Martinuzzi R, Turner RJ. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Applied and Environmental Microbiology, 2007, 73(15):4940-4949.
    [45] Parahitiyawa NB, Samaranayake YH, Samaranayake LP, Ye J, Tsang PWK, Cheung BPK, Yau JYY, Yeung SKW. Interspecies variation in Candida biofilm formation studied using the Calgary biofilm device. APMIS, 2006, 114(4):298-306.
    [46] Paulone S, Malavasi G, Ardizzoni A, Orsi CF, Peppoloni S, Neglia RG, Blasi E. Candida albicans survival, growth and biofilm formation are differently affected by mouthwashes:an in vitro study. New Microbiologica, 2017, 40(1):45-52.
    [47] Uppuluri P, Chaturvedi AK, Lopez-Ribot JL. Design of a simple model of Cda glabrata biofilms. Mycoses, 2013, 56(6):672-680.
    [75] Silva S, Pires P, Monteiro DR, Negri M, Gorup LF, Camargo ER, Barbosa DB, Oliveira R, Williams DW, Henriques M, Azeredo J. The effect of silver nanoparticles and nystatin on mixed biofilms of Candida glabrata and Candida albicanson acrylic. Medical Mycology, 2013, 51(2):178-184.
    [76] Bugli F, Posteraro B, Papi M, Torelli R, Maiorana A, Sterbini FP, Posteraro P, Sanguinetti M, De Spirito M. In vitro interaction between alginate lyase and amphotericin B against Aspergillus fumigatus biofilm determined by different methods. Antimicrobial Agents and Chemotherapy, 2013, 57(3):1275-1282.
    [77] Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP. Biofilm matrix regulation by Candida albicansZap1. PLoS Biology, 2009, 7(6):e1000133.
    [78] Nett JE, Sanchez H, Cain MT, Andes DR. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. Journal of Infectious Diseases, 2010, 202(1):171-175.
    [79] Yu S, Su TT, Wu HJ, Liu SH, Wang D, Zhao TH, Jin ZJ, Du WB, Zhu MJ, Chua SL, Yang L, Zhu DY, Gu LC, Ma LZ. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix. Cell Research, 2015, 25(12):1352-1367.detachment of Staphylococcus epidermidis biofilms. Biomedical Microdevices, 2008, 10(4):489-498.
    [54] Shin S, Ahmed I, Hwang J, Seo Y, Lee E, Choi J, Moon S, Hong JW. A microfluidic approach to investigating a synergistic effect of tobramycin and sodium dodecyl sulfate on Pseudomonas aeruginosa biofilms. Analytical Sciences, 2016, 32(1):67-73.
    [55] Nett JE, Andes DR. Fungal biofilms:in vivo models for discovery of anti-biofilm drugs. Microbiology Spectrum, 2015, 3(3), doi:10.1128/microbiolspec.MB-0008-2014.
    [56] Nobile CJ, Johnson AD. Candida albicans biofilms and human disease. Annual Review of Microbiology, 2015, 69:71-92.
    [57] Kucharíková S, Tournu H, Holtappels M, Van Dijck P, Lagrou K. In vivo efficacy of anidulafungin against mature Candida albicans biofilms in a novel rat model of catheter-associated candidiasis. Antimicrobial Agents and Chemotherapy, 2010, 54(10):4474-4475.
    [58] Schinabeck MK, Long LA, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, Ghannoum MA. Rabbit model of Candida albicans biofilm infection:liposomal amphotericin B antifungal lock therapy. Antimicrobial Agents and Chemotherapy, 2004, 48(5):1727-1732.
    [59] Sun JN, Solis NV, Phan QT, Bajwa JS, Kashleva H, Thompson A, Liu YP, Dongari-Bagtzoglou A, Edgerton M, Filler SG. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathogens, 2010, 6(11):e1001181.
    [60] Harriott MM, Lilly EA, Rodriguez TE, Fidel PL Jr, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa.Microbiology, 2010, 156(12):3635-3644.
    [61] Vediyappan G, Rossignol T, d'Enfert C. Interaction of Candida albicans biofilms with antifungals:transcriptional response and binding of antifungals to beta-glucans. Antimicrobial Agents and Chemotherapy, 2010, 54(5):2096-2111.
    [62] Duguid IG, Evans E, Brown MRW, Gilbert P. Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. Journal of Antimicrobial Chemotherapy, 1992, 30(6):803-810.
    [63] Evans DJ, Allison DG, Brown MRW, Gilbert P. Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin:effect of specific growth rate. Journal of Antimicrobial Chemotherapy, 1991, 27(2):177-184.
    [64] Baillie GS, Douglas LJ. Effect of growth rate on resistance of Candida albicansbiofilms to antifungal agents. Antimicrobial Agents and Chemotherapy, 1998, 42(8):1900-1905.
    [65] Baillie GS, Douglas LJ. Iron-limited biofilms of Candida albicansand their susceptibility to amphotericin B. Antimicrobial Agents and Chemotherapy, 1998, 42(8):2146-2149.
    [66] Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanism of fluconazole resistance in Candida albicansbiofilms:phase-specific role of efflux pumps and membrane sterols. Infection and Immunity, 2003, 71(8):4333-4340.
    [67] Nett JE, Lepak AJ, Marchillo K, Andes DR. Time course global gene expression analysis of an in vivo Candida biofilm. The Journal of Infectious Diseases, 2009, 200(2):307-313.
    [68] Burrows LL, Stark M, Chan C, Glukhov E, Sinnadurai S, Deber CM. Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. Journal of Antimicrobial Chemotherapy, 2006, 57(5):899-907.
    [69] Ramage G, Saville SP, Wickes BL, López-Ribot JL. Inhibition of Candida albicansbiofilm formation by farnesol, a quorum-sensing molecule. Applied and Environmental Microbiology, 2002, 68(11):5459-5463.
    [70] Delattin N, De Brucker K, Craik DJ, Cheneval O, Fröhlich M, Veber M, Girandon L, Davis TR, Weeks AE, Kumamoto CA, Cos P, Coenye T, De Coninck B, Cammue BPA, Thevissen K. Plant-derived decapeptide OSIP108 interferes with Candida albicansbiofilm formation without affecting cell viability. Antimicrobial Agents and Chemotherapy, 2014, 58(5):2647-2656.
    [71] Martinez LR, Mihu MR, Tar M, Cordero RJB, Han G, Friedman AJ, Friedman JM, Nosanchuk JD. Demonstration of antibiofilm and antifungal efficacy of chitosan against candidal biofilms, using an in vivo central venous catheter model. The Journal of Infectious Diseases, 2010, 201(9):1436-1440.
    [72] Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, Dror N, Barliya T, Mandel M, Lavie G. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrobial Agents and Chemotherapy, 2006, 50(12):4144-4152.
    [73] Bachmann SP, Patterson TF, López-Ribot JL. In vitro activity of caspofungin (MK-0991) against Candida albicansclinical isolates displaying different mechanisms of azole resistance. Journal of Clinical Microbiology, 2002, 40(6):2228-2230.
    [74] Monteiro DR, Silva S, Negri M, Gorup LF, de Camargo ER, Oliveira R, Barbosa DB, Henriques M. Antifungal activity of silver nanoparticles in combination with nystatin and chlorhexidine digluconate against Candida albicansand Candi
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李瑞莲,王倬,杜昱光. 白色念珠菌生物被膜研究进展[J]. 微生物学报, 2017, 57(8): 1206-1218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-03-30
  • 最后修改日期:2017-05-09
  • 在线发布日期: 2017-08-10
文章二维码