双退火温度PCR扩增DNA
作者:
基金项目:

国家自然科学基金(31371831)


Amplification of DNA with double annealing temperature PCR
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]与设置单一退火温度的常规PCR(S-Tm PCR)不同,本研究探讨双退火温度PCR(D-Tm PCR)由高到低设置2条引物各自退火温度。[方法]以PxF61和VPel为正/反向引物,用Q5 DNA聚合酶扩增4.3 kb的模式DNA pET20b-Xyn(黑曲霉木聚糖酶基因)。PCR程序为:98℃预变性3 min,30次循环{98℃变性30 s,设置双退火[Tm1 70℃(PxF61)退火15 s、Tm2 62℃(VPel)退火15 s],72℃延伸130 s}。[结果]与S-Tm PCR(61℃)相比,D-Tm PCR扩增4.3 kb的目的条带亮度更高,减少2条杂带;经25次循环目的DNA产物量最高。D-Tm PCR用于长片段引物扩增5.3 kb重组质粒DNA条带更明显。[结论]D-Tm PCR直接扩增目的条带,避免了探讨Tm的麻烦,不要求2条引物Tm相近,从理论上更加清晰地认识引物与各自模板分步退火过程。

    Abstract:

    [Objective] Instead of standard PCR setting a single annealing temperature (S-Tm), we studied double annealing temperature PCR (D-Tm PCR) setting respective annealing temperature for forward and reverse primers from higher to lower. [Methods] A 4.3 kb pET20b-Xyn (Aspergillus niger xylanase gene) model DNA was amplified with Q5 DNA polymerase by using PxF61 and VPel as forward and reverse primers. The PCR procedure was:pre-denaturation at 98℃ for 3 min, and 30 cycles of denaturation at 98℃ for 30 s, annealing at Tm1 70℃ (PxF61) for 15 s and at Tm2 62℃ (VPel) for 15 s, extension at 72℃ for 130 s. [Results] The 4.3 kb target DNA band of D-Tm PCR was a little brighter, whereas non-specific DNA bands were two less than those of the S-Tm PCR (Tm=61℃). Twenty-five cycles of amplification created the brightest target DNA band in the D-Tm PCR. A 5.3 kb recombinant plasmid DNA was clearly amplified in the D-Tm PCR than the S-Tm PCR. [Conclusion] The D-Tm PCR amplified directly target DNA band without demanding for investigation of an optimal annealing temperature and for setting closer annealing temperatures between forward and reverse primers. Moreover, two respective annealing steps were clearly elucidated from theoretical viewpoint.

    参考文献
    [1] Saiki R, Gelfand D, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988, 239(4839):487-491.
    [2] Wang JC, Ji L, Yang XL, Ma YG, Lin MS. Diagnosis of pine wood nematode, Bursaphelenchus xylophilus, by real-time fluorescent PCR using TaqMan probe. Acta Phytopathologica Sinica, 2006, 36(3):281-284. (in Chinese)王金成, 季镭, 杨秀丽, 马以桂, 林茂松. 松材线虫TaqMan探针实时荧光PCR诊断. 植物病理学报, 2006, 36(3):281-284.
    [3] Liu JS, Jiang Q, Si CD, Gan YD, Han LX, Qu LD. Establishment of PCR assay for differentiation of Muscovy duck parvovirus from goose parvovirus. Veterinary Science in China, 2007, 37(6):469-472. (in Chinese)刘家森, 姜骞, 司昌德, 甘一迪, 韩凌霞, 曲连东. 番鸭细小病毒与鹅细小病毒PCR鉴别诊断方法的建立. 中国兽医科学, 2007, 37(6):469-472.
    [4] Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985, 230(4732):1350-1354.
    [5] Liu LW, Zhang GQ, Zhang Z, Wang SY, Chen HG. Terminal amino acids disturb xylanase thermostability and activity. Journal of Biological Chemistry, 2011, 286(52):44710-44715.
    [6] Liu LW, Wang LM, Zhang Z, Guo XD, Li XQ, Chen HG. Domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase. BMC Biotechnology, 2012, 12:28.
    [7] Kleine J, Liebl W. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles, 2006, 10(5):373-381.
    [8] Mamo G, Hatti-Kaul R, Mattiasson B. Fusion of carbohydrate binding modules from Thermotoga neapolitana with a family 10 xylanase from Bacillus halodurans S7. Extremophiles, 2007, 11(1):169-177.
    [9] Trinh Q, Zhu PY, Shi H, Xu WT, Hao JR, Luo YB, Huang KL. A-T linker adapter polymerase chain reaction for determining flanking sequences by rescuing inverse PCR or thermal asymmetric interlaced PCR products. Analytical Biochemistry, 2014, 466:24-26.
    [10] Druml B, Kaltenbrunner M, Hochegger R, Cichna-Markl M. A novel reference real-time PCR assay for the relative quantification of (game) meat species in raw and heat-processed food. Food Control, 2016, 70:392-400.
    [11] Carr AC, Moore SD. Robust quantification of polymerase chain reactions using global fitting. PLoS One, 2012, 7(5):e37640.
    [12] Le YL, Chen HY, Zagursky R, Wu JHD, Shao WL. Thermostable DNA ligase-mediated PCR production of circular plasmid (PPCP) and its application in directed evolution via in situ error-prone PCR. DNA Research, 2013, 20(4):375-382.
    [13] Vincent M, Xu Y, Kong HM. Helicase-dependent isothermal DNA amplification. EMBO Reports, 2004, 5(8):795-800.
    [14] Han LC, Ma SS, Liu YJ, Liu M, Liu LW. Construction of recombinant plasmid by a step-reverse PCR method. Henan Science, 2015, 33(8):1321-1325. (in Chinese)韩来闯, 马闪闪, 刘亚娟, 刘猛, 刘亮伟. 构建重组质粒的二步PCR方法. 河南科学, 2015, 33(8):1321-1325.
    [15] You C, Zhang XZ, Zhang YHP. Simple cloning via direct transformation of PCR product (DNA multimer) to Escherichia coli and Bacillus subtilis. Applied and Environmental Microbiology, 2012, 78(5):1593-1595.
    [16] Wu AJ, Wang H, Yu SY. Study about the relationship of dNTP, Mg2+ and multiplex polymerase chain reaction. China Public Health, 2001, 17(2):109-110. (in Chinese)吴爱军, 王红, 俞守义. 在多基因PCR中对dNTP与Mg2+的浓度关系的研究. 中国公共卫生, 2001, 17(2):109-110.
    [17] Cobb BD, Clarkson JM. A simple procedure for optimising the polymerase chain reaction (PCR) using modified Taguchi methods. Nucleic Acids Research, 1994, 22(18):3801-3805.
    [18] Subramanian A, Mamedov T, Pinnear E, Viljoen H. Importance of annealing times in the PCR amplification of GC-rich genes. Journal of Biotechnology, 2008, 136 Suppl:S100.
    [19] Mamedov TG, Pienaar E, Whitney SE, Termaat JR, Carvill G, Goliath R, Subramanian A, Viljoen HJ. A fundamental study of the PCR amplification of GC-rich DNA templates. Computational Biology and Chemistry, 2008, 32(6):452-457.
    [20] Zhang GX, Yuan BM, Xu PR, Xue LX. Modified touchdown PCR efficiently improves specificity of PCR. Journal of Zhengzhou University (Medical Sciences), 2003, 38(3):352-354. (in Chinese)张贵星, 袁保梅, 许培荣, 薛乐勋. 改良的降落PCR与普通PCR结果比较. 郑州大学学报(医学版), 2003, 38(3):352-354.
    [21] Rychlik W, Spencer WJ, Rhoads RE. Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 1990, 18(21):6409-6412.
    [22] Liu M, Liu YJ, Xu WX, He TY, Liu LW. Construction of recombinant plasmid containing repeated sequence by megaprimer reverse PCR. Henan Science, 2016, 34(4):501-505. (in Chinese)刘猛, 刘亚娟, 徐文选, 贺添艳, 刘亮伟. 长片断引物反向PCR方法构建重复序列的重组质粒. 河南科学, 2016, 34(4):501-505.
    [23] Li QS, Guo JP, Tao QM. Amplification of NS5 gene of hepatitis C virus by "Two Annealing temperature" PCR. Chinese Biochemical Journal, 1996, 12(2):249-250. (in Chinese)李庆生, 郭建平, 陶其敏. "双退火温度"多聚酶链反应扩增丙型肝炎病毒NS5基因. 生物化学杂志, 1996, 12(2):249-250.
    [24] Zhang ZY, Martineau D. Single-tube heminested PCR coupled with "touchdown" PCR for the analysis of the walleye dermal sarcoma virus env gene. Journal of Virological Methods, 1996, 60(1):29-37.
    [25] Lee JY, Lim HW, Yoo SI, Zhang BT, Park TH. Simulation and real-time monitoring of polymerase chain reaction for its higher efficiency. Biochemical Engineering Journal, 2006, 29(1/2):109-118.
    引证文献
    引证文献 [0]
    [1]上官云杰,梁亚萍,杨昂,程晋生,黄亚威,刘亮伟.同源引物的非等量PCR[J].河南科学,2018(3):326-333.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄亚威,杨昂,上官云杰,贺添艳,徐文选,刘亮伟. 双退火温度PCR扩增DNA[J]. 微生物学报, 2017, 57(8): 1262-1269

复制
分享
文章指标
  • 点击次数:1153
  • 下载次数: 3220
  • HTML阅读次数: 1437
  • 引用次数: 0
历史
  • 收稿日期:2017-01-06
  • 最后修改日期:2017-04-27
  • 在线发布日期: 2017-08-10
文章二维码