Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
Engineering Technology Research Center of Microorganisms and Biocatalysis, School of Life Sciences, Anhui University, Hefei 230039, Anhui Province, China 在期刊界中查找 在百度中查找 在本站中查找
[Objective] To obtain efficient raw rice starch-digesting enzymes. [Methods] α-Amylase AmyP can hydrolyze raw rice starch efficiently. We constructed a chimeric α-amylase (AmyP-Clo) by fusion of the catalytic domain of AmyP and a starch binding domain of α-amylase from Clostridium butyricum T-7. [Results] AmyP-Clo retained the advantages of AmyP, and increased catalytic efficiency towards raw rice starch. The specific activity was (373.9±8.4) U/mg. The final hydrolysis degree was (42.7±1.1)% for the hydrolysis of 5% raw rice starch suspension after 4 h. The maximal fraction of bound protein was (71.1±1.6)%. [Conclusion] AmyP-Clo could efficiently hydrolyze raw rice starch.
[1] Bemiller JN. Starch modification:challenges and prospects. Starch/Stärke, 1997, 49(4):127-131.
[2] Buléon A, Colonna P, Planchot V, Ball S. Starch granules:structure and biosynthesis. International Journal of Biological Macromolecules, 1998, 23(2):85-112.
[3] Sun HY, Zhao PJ, Ge XY, Xia YJ, Hao ZK, Liu JW, Peng M. Recent advances in microbial raw starch degrading enzymes. Applied Biochemistry and Biotechnology, 2010, 160(4):988-1003.
[4] Robertson GH, Wong DWS, Lee CC, Wagschal K, Smith MR, Orts WJ. Native or raw starch digestion:a key step in energy efficient biorefining of grain. Journal of Agricultural and Food Chemistry, 2006, 54(2):353-365.
[5] Ueda M, Asano T, Nakazawa M, Miyatake K, Inouye K. Purification and characterization of novel raw-starch-digesting and cold-adapted α-amylases from Eisenia foetida. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2008, 150(1):125-130.
[6] Lei Y, Peng H, Wang Y, Liu YT, Han F, Xiao YZ, Gao Y. Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Applied Microbiology and Biotechnology, 2012, 94(6):1577-1584.
[7] Lomthong T, Chotineeranat S, Kitpreechavanich V. Production and characterization of raw starch degrading enzyme from a newly isolated thermophilic filamentous bacterium, Laceyella sacchari LP175. Starch/Stärke, 2015, 67(3/4):255-266.
[8] Tawil G, Viksø-Nielsen A, Rolland-Sabaté A, Colonna P, Buléon A. Hydrolysis of concentrated raw starch:a new very efficient α-amylase from Anoxybacillus flavothermus. Carbohydrate Polymers, 2012, 87(1):46-52.
[9] Božić N, Ruiz J, López-Santín J, Vujčić Z. Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochemical Engineering Journal, 2011, 53(2):203-209.
[10] Liu Y, Lei Y, Zhang XC, Gao Y, Xiao YZ, Peng H. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Marine Biotechnology, 2012, 14(3):253-260.
[11] Peng H, Zheng YY, Chen MJ, Wang Y, Xiao YZ, Gao Y. A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Letters, 2014, 588(7):1161-1167.
[12] Tanaka T, Ishimoto E, Shimomura Y, Taniguchi M, Oi S. Purification and some properties of raw starch-binding amylase of Clostridium butyricum T-7 isolated from mesophilic methane sludge. Agricultural and Biological Chemistry, 1987, 51(2):399-405.
[13] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31(3):426-428.
[14] Tahir R, Ellis PR, Butterworth PJ. The relation of physical properties of native starch granules to the kinetics of amylolysis catalysed by porcine pancreatic α-amylase. Carbohydrate Polymers, 2010, 81(1):57-62.
[15] Hamilton LM, Kelly CT, Fogarty WM. Raw starch degradation by the non-raw starch-adsorbing bacterial alpha amylase of Bacillus sp. IMD 434. Carbohydrate Research, 1998, 314(3/4):251-257.
[16] Peng H, Lei Y, Liu YT, Wang Y. Degradation of raw corn starch by an α-amylase (AmyP) from marine environment. China Biotechnology, 2012, 32(7):79-83. (in Chinese)彭惠, 雷寅, 刘源涛, 汪颖. 海洋环境来源的淀粉酶AmyP对生玉米淀粉的降解特性. 中国生物工程杂志, 2012, 32(7):79-83.
[17] Iefuji H, Chino M, Kato M, Iimura Y. Raw-starch-digesting and thermostable α-amylase from the yeast Cryptococcus sp. S-2:purification, characterization, cloning and sequencing. Biochemical Journal, 1996, 318(3):989-996.
[18] Juge N, Nøhr J, Le Gal-Coëffet MF, Kramhøft B, Furniss CSM, Planchot V, Archer DB, Williamson G, Svensson B. The activity of barley α-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2006, 1764(2):275-284.
[19] Parashar D, Satyanarayana T. A chimeric α-amylase engineered from Bacillus acidicola and Geobacillus thermoleovorans with improved thermostability and catalytic efficiency. Journal of Industrial Microbiology & Biotechnology, 2016, 43(4):473-484.