火球菌Pyrococcus furious瓣状核酸内切酶1的表达纯化及酶学特征
作者:
基金项目:

国家自然科学基金(31371260,J1210047)


Expression, purification and characterization of flap endonuclease 1 from Pyrococcus furious
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 克隆表达和纯化火球菌Pyrococcus furious来源的瓣状核酸内切酶1基因pFEN1(PF1414),对该蛋白的活性和酶学特征进行鉴定和分析。[方法] 将pFEN1在大肠杆菌中进行重组表达,经亲和层析纯化得到电泳纯蛋白;利用人工合成的荧光标记的寡核苷酸片段作为底物,用变性聚丙烯酰胺凝胶电泳鉴定pFEN1在体外的酶学特性以及与其他蛋白的相互作用。[结果] pFEN1重组蛋白能在大肠杆菌中进行高效表达;高于100 mmol/L的NaCl会抑制pFEN1的活性;pFEN1的核酸酶活性依赖于金属离子Mg2+或Mn2+,且Mn2+的催化效率优于Mg2+;来自嗜热古菌的pFEN1是一种耐高温蛋白,最适反应温度为60-65℃;增殖细胞核抗原(PCNA)能促进pFEN1的内切酶活性。[结论] 本研究证实pFEN1是一种Mg2+或Mn2+依赖的核酸内切酶,且PCNA能促进该酶的活性。

    Abstract:

    [Objective] To clone, express, purify and characterize flap endonuclease 1 from thermophilic archaea Pyrococcus furious.[Methods] We cloned fen1 gene from Pyrococcus furious (pFEN1), expressed it in Escherichia coli and purified the protein by affinity chromatography. We applied denaturing polyacrylamide gel electrophoresis to detect the enzymatic activities and studied its interaction with other proteins by using fluorescence labeled oligonucleotides as substrates.[Results] pFEN1 was overexpressed in E. coli. The presence of salts diminished the endonuclease activity of pFEN1, with cleavage greatly reduced at 100 mmol/L of NaCl. The activity of pFEN1 was detected only in the presence of magnesium (Mg2+) or manganese (Mn2+), and pFEN1 showed a higher endonucease activity under the catalysis of Mn2+. pFEN1 was thermally stable and had highest activity at temperature range of 60-65℃. Proliferating cell nuclear antigen (PCNA) can significantly promote the activity of pFEN1.[Conclusion] This study confirmed that pFEN1 is a Mg2+ or Mn2+ dependent endonuclease and PCNA can stimulate its activity.

    参考文献
    [1] Liu R, Qiu JZ, Finger LD, Zheng L, Shen BH. The DNA-protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations. Nucleic Acids Research, 2006, 34(6):1772-1784.
    [2] Balakrishnan L, Bambara RA. Flap endonuclease 1. Annual Review of Biochemistry, 2013, 82(1):119-138.
    [3] Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays, 1997, 19(3):233-240.
    [4] Hegde ML, Hazra TK, Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Research, 2008, 18(1):27-47.
    [5] Bambara RA, Murante RS, Henricksen LA. Enzymes and reactions at the eukaryotic DNA replication fork. Journal of Biological Chemistry, 1997, 272(8):4647-4650.
    [6] Turchi JJ, Huang L, Murante RS, Kim Y, Bambara RA. Enzymatic completion of mammalian lagging-strand DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(21):9803-9807.
    [7] Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair:reconstitution with purified proteins and requirement for DNase IV (FEN1). The EMBO Journal, 1997, 16(11):3341-3348.
    [8] Grasso S, Tell G. Base excision repair in Archaea:back to the future in DNA repair. DNA Repair, 2014, 21:148-157.
    [9] Johnson RE, Kovvali GK, Prakash L, Prakash S. Requirement of the yeast RTH15' to 3' exonuclease for the stability of simple repetitive DNA. Science, 1995, 269(5221):238-240.
    [10] Wu X, Wilson TE, Lieber MR. A role for FEN-1 in nonhomologous DNA end joining:the order of strand annealing and nucleolytic processing events. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4):1303-1308.
    [11] Dehé PM, Gaillard PHL. Control of structure-specific endonucleases to maintain genome stability. Nature Reviews Molecular Cell Biology, 2017, 18(5):315-330.
    [12] Kathera C, Zhang J, Janardhan A, Sun HF, Ali W, Zhou XL, He LF, Guo ZG. Interacting partners of FEN1 and its role in the development of anticancer therapeutics. Oncotarget, 2017, 8(16):27593-27602.
    [13] Nazarkina ZK, Lavrik OI, Khodyreva SN. Flap endonuclease-1 and its role in the processes of DNA metabolism in eucaryotic cells. Molecular Biology, 2008, 42(3):405-421.
    [14] Wu XT, Li J, Li XY, Hsieh CL, Burgers PMJ, Lieber MR. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Research, 1996, 24(11):2036-2043.
    [15] Budd ME, Campbell JL. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Molecular and Cellular Biology, 1997, 17(4):2136-2142.
    [16] Bae SH, Bae KH, Kim JA, Seo YS. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature, 2001, 412(6845):456-461.
    [17] Wang WS, Bambara RA. Human Bloom protein stimulates flap endonuclease 1 activity by resolving DNA secondary structure. Journal of Biological Chemistry, 2005, 280(7):5391-5399.
    [18] Dianova Ⅱ, Bohr VA, Dianov GL. Interaction of human AP endonuclease 1 with flap endonuclease 1 and proliferating cell nuclear antigen involved in long-patch base excision repair. Biochemistry, 2001, 40(42):12639-12644.
    [19] Finger LD, Atack JM, Tsutakawa S, Classen S, Tainer J, Grasby J, Shen BH. The wonders of flap endonucleases:structure, function, mechanism and regulation//MacNeill S. The Eukaryotic Replisome:A Guide to Protein Structure and Function. Netherlands:Springer, 2012:301-326.
    [20] Mase T, Kubota K, Miyazono KI, Kawarabayasi Y, Tanokura M. Structure of flap endonuclease 1 from the hyperthermophilic archaeon Desulfurococcus amylolyticus. Acta Crystallographica Section F, 2011, 67(2):209-213.
    [21] Tomlinson CG, Atack JM, Chapados B, Tainer JA, Grasby JA. Substrate recognition and catalysis by flap endonucleases and related enzymes. Biochemical Society Transactions, 2010, 38(2):433-437.
    [22] Fiala G, Stetter KO. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100℃. Archives of Microbiology, 1986, 145(1):56-61.
    [23] Robb FT, Maeder DL, Brown JR, Diruggiero J, Stump MD, Yeh RK, Weiss RB, Dunn DM. Genomic sequence of hyperthermophile, Pyrococcus furiosus:Implications for physiology and enzymology. Methods in Enzymology, 2001, 330:134-157.
    [24] Lundberg KS, Shoemaker DD, Adams MWW, Short JM, Sorge JA, Mathur EJ. High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene, 1991, 108(1):1-6.
    [25] Hosfield DJ, Mol CD, Shen BH, Tainer JA. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1:coupling DNA and PCNA binding to FEN-1 activity. Cell, 1998, 95(1):135-146.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢娟娟,王风平,刘喜朋. 火球菌Pyrococcus furious瓣状核酸内切酶1的表达纯化及酶学特征[J]. 微生物学报, 2017, 57(9): 1352-1361

复制
分享
文章指标
  • 点击次数:1008
  • 下载次数: 1727
  • HTML阅读次数: 950
  • 引用次数: 0
历史
  • 收稿日期:2017-03-15
  • 最后修改日期:2017-04-19
  • 在线发布日期: 2017-08-31
文章二维码