古菌蛋白激酶的研究进展
作者:
基金项目:

中国博士后科学基金(11200077311030)


Progress in archaeal protein kinases study
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    磷酸化是蛋白质翻译后修饰(post-translational modification)的主要方式,可由蛋白激酶、磷酸转移酶、磷酸化酶等多种方式催化进行。其中,由蛋白激酶(protein kinases)/磷酸酶(protein phosphatases)介导的可逆的蛋白磷酸化是细胞中信号转导的重要机制,在DNA复制、转录、蛋白质翻译、DNA损伤修复等生命过程中起广泛的调节作用。目前,古菌中蛋白激酶的研究尚属于初期阶段。虽然磷酸化蛋白质组学研究表明,古菌中存在大量的磷酸化蛋白质,但是我们对其具体催化作用的酶及调控机制尚不清楚。本文总结了古菌中已报道的蛋白激酶所参与的生命过程,包括古菌的DNA代谢、细胞代谢、细胞周期和运动机制等四个方面,并对今后的研究提出展望。

    Abstract:

    Phosphorylation is one of the main types of protein post-translational modifications, which can be catalyzed by protein kinase, phosphotransferase, and phosphorylase. Among them, reversible protein phosphorylation mediated by protein kinases/phosphatases is an important mechanism of signal transduction in cells and plays regulatory roles in the processes of DNA replication, transcription, protein translation, and DNA repair. The study of protein kinases in archaea is still at the initial stage. Although phosphoproteomics studies showed that there are a large number of phosphorylated proteins in archaea, their specific enzymes and regulation mechanisms involved are still unclear. In this review, we summarized the putative functions of the protein kinases involved in the cellular processes including DNA metabolism, cell metabolism, cell cycle and cell mobility mechanism. Finally, we also proposed the perspectives of studies on archaeal protein kinases.

    参考文献
    [1] Kennelly PJ, Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. Journal of Bacteriology, 1996, 178(16):4759-4764.
    [2] Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(4):1067-1074.
    [3] Spudich JL, Stoeckenius W. Light-regulated retinal-dependent reversible phosphorylation of Halobacterium proteins. Journal of Biological Chemistry, 1980, 255(12):5501-5503.
    [4] Allers T, Mevarech M. Archaeal genetics-the third way. Nature Reviews Genetics, 2005, 6(1):58-73.
    [5] Kennelly PJ. Protein Ser/Thr/Tyr phosphorylation in the archaea. Journal of Biological Chemistry, 2014, 289(14):9480-9487.
    [6] Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annual Review of Microbiology, 2003, 57:369-394.
    [7] Reeve JN, Schleper C. Archaea:very diverse, often different but never bad? Current Opinion in Microbiology, 2011, 14(3):271-273.
    [8] Bell SD, Jackson SP. Transcription and translation in archaea:A mosaic of eukaryal and bacterial features. Trends in Microbiology, 1998, 6(6):222-228.
    [9] Grohmann D, Werner F. Recent advances in the understanding of archaeal transcription. Current Opinion in Microbiology, 2011, 14(3):328-334.
    [10] Geiduschek EP, Ouhammouch M. Archaeal transcription and its regulators. Molecular Microbiology, 2005, 56(6):1397-1407.
    [11] Soppa J. Basal and regulated transcription in archaea. Advances in Applied Microbiology, 2001, 50:171-217.
    [12] Bernander R, Poplawski A. Cell cycle characteristics of thermophilic archaea. Journal of Bacteriology, 1997, 179(16):4963-4969.
    [13] Lindås AC, Bernander R. The cell cycle of archaea. Nature Reviews Microbiology, 2013, 11(9):627-638.
    [14] Esser D, Pham TK, Reimann J, Albers SV, Siebers B, Wright PC. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. Journal of Proteome Research, 2012, 11(10):4823-4833.
    [15] Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction:impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Molecular & Cellular Proteomics, 2013, 12(12):3908-3923.
    [16] Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics:frequency analysis and curation of the swiss-prot database. Scientific Reports, 2011, 1:90.
    [17] Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiology Reviews, 2016, 40(5):625-647.
    [18] Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR. Evolution of two-component signal transduction. Molecular Biology and Evolution, 2000, 17(12):1956-1970.
    [19] Casino P, Rubio V, Marina A. The mechanism of signal transduction by two-component systems. Current Opinion in Structural Biology, 2010, 20(6):763-771.
    [20] Shi Y, Belosinschi D, Brouillette F, Belfkira A, Chabot B. Phosphorylation of Kraft fibers with phosphate esters. Carbohydrate Polymers, 2014, 106:121-127.
    [21] Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 2015, 24:47-52.
    [22] Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea:evolution of the "eukaryotic" protein kinase superfamily. Genome Research, 1998, 8(10):1038-1047.
    [23] Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences, 2002, 27(10):514-520.
    [24] Taylor SS, Kornev AP. Protein kinases:evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 2011, 36(2):65-77.
    [25] Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily:a perspective. Genome Biology, 2003, 4(5):111.
    [26] Av-Gay Y, Everett M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends in Microbiology, 2000, 8(5):238-244.
    [27] Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science, 2002, 298(5600):1912-1934.
    [28] Hegedus DD, Gerbrandt K, Coutu C. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Plant Pathology, 2016, 17(4):634-647.
    [29] Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification. FASEB Journal, 1995, 9(8):576-596.
    [30] Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. Journal of Molecular Biology, 1999, 289(4):729-745.
    [31] Kennelly PJ. Archaeal protein kinases and protein phosphatases:insights from genomics and biochemistry. Biochemical Journal, 2003, 370(2):373-389.
    [32] Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A, Greenblatt JF, Harrington L, Lydall D, Durocher D. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell, 2006, 124(6):1155-1168.
    [33] Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science, 1999, 285(5428):751-753.
    [34] Hecker A, Graille M, Madec E, Gadelle D, Le Cam E, van Tilbergh H, Forterre P. The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in archaea and eukarya. Biochemical Society Transactions, 2009, 37(Pt 1):29-35.
    [35] Perrochia L, Guetta D, Hecker A, Forterre P, Basta T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6 A tRNA modification. Nucleic Acids Research, 2013, 41(20):9484-9499.
    [36] Williams E, Lowe TM, Savas J, DiRuggiero J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles, 2007, 11(1):19-29.
    [37] Götz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biology, 2007, 8(10):R220.
    [38] Song XG, Huang QH, Ni JF, Yu Y, Shen YL. Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A. Extremophiles, 2016, 20(4):537-546.
    [39] Zhang GS, Zhang F, Ding G, Li J, Guo XP, Zhu JX, Zhou LG, Cai SC, Liu XL, Luo YM, Zhang GF, Shi WY, Dong XZ. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 2012, 6(7):1336-1344.
    [40] Wu WL, Lai SJ, Yang JT, Chern J, Liang SY, Chou CC, Kuo CH, Lai MC, Wu SH. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1T identified the role of protein phosphorylation in methanogenesis and osmoregulation. Scientific Reports, 2016, 6:29013.
    [41] Mahapatra A, Patel A, Soares JA, Larue RC, Zhang JK, Metcalf WW, Krzycki JA. Characterization of a Methanosarcina acetivorans mutant unable to translate UAG as pyrrolysine. Molecular Microbiology, 2006, 59(1):56-66.
    [42] Bidle KA. Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile Haloferax volcanii. Extremophiles, 2003, 7(1):1-7.
    [43] Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993, 73(6):1197-1206.
    [44] Welihinda AA, Tirasophon W, Green SR, Kaufman RJ. Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Molecular and Cellular Biology, 1998, 18(4):1967-1977.
    [45] LaRonde NA. The ancient microbial RIO kinases. Journal of Biological Chemistry, 2014, 289(14):9488-9492.
    [46] Esser D, Siebers B. Atypical protein kinases of the RIO family in archaea. Biochemical Society Transactions, 2013, 41(1):399-404.
    [47] Humbard MA, Reuter CJ, Zuobi-Hasona K, Zhou GY, Maupin-Furlow JA. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii. Archaea, 2010, 2010:481725.
    [48] Tahara M, Ohsawa A, Saito S, Kimura M. In vitro phosphorylation of initiation factor 2α (aIF2α) from hyperthermophilic archaeon Pyrococcus horikoshii OT3. The Journal of Biochemistry, 2004, 135(4):479-485.
    [49] She QX, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, van der Oost J. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14):7835-7840.
    [50] Jarrell KF, Albers SV. The archaellum:an old motility structure with a new name. Trends in Microbiology, 2012, 20(7):307-312.
    [51] Albers SV, Jarrell KF. The archaellum:how archaea swim. Frontiers in Microbiology, 2015, 6:23.
    [52] Alam M, Oesterhelt D. Morphology, function and isolation of halobacterial flagella. Journal of Molecular Biology, 1984, 176(4):459-475.
    [53] Haurat MF, Figueiredo AS, Hoffmann L, Li LL, Herr K, Wilson AJ, Beeby M, Schaber J, Albers SV. ArnS, a kinase involved in starvation-induced archaellum expression. Molecular Microbiology, 2017, 103(1):181-194.
    [54] Reimann J, Lassak K, Khadouma S, Ettema TJG, Yang N, Driessen AJM, Klingl A, Albers SV. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Molecular Microbiology, 2012, 86(1):24-36.
    [55] Duan X, He ZG. Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Biochemical and Biophysical Research Communications, 2011, 407(1):242-247.
    [56] Shi L, Pigeonneau N, Ravikumar V, Dobrinic P, Macek B,Franjevic D, Noirot-Gros MF, Mijakovic I. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Frontier in Microbiology, 2014, 5:495.
    [57] Baer CE, Iavarone AT, Alber T, Sassetti CM. Biochemical and spatial coincidence in the provisional Ser/Thr protein kinase interaction network of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289(30):20422-20433.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

钟晴,申玉龙,黄奇洪. 古菌蛋白激酶的研究进展[J]. 微生物学报, 2017, 57(9): 1383-1391

复制
分享
文章指标
  • 点击次数:989
  • 下载次数: 2570
  • HTML阅读次数: 763
  • 引用次数: 0
历史
  • 收稿日期:2017-05-14
  • 最后修改日期:2017-06-26
  • 在线发布日期: 2017-08-31
文章二维码