深海热液口Epsilon-变形菌的物种多样性与环境适应机理
作者:
基金项目:

国家自然科学基金(31570011);广东省自然科学基金(2015A030306039);中国科学院"百人计划"


Biodiversity and environmental adaptation of deep-sea hydrothermal vent Epsilon-proteobacteria
Author:
  • Yang Zang

    Yang Zang

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Sciences, Beijing 100049, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Beile Gao

    Beile Gao

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    Epsilon-变形菌是近年来宏基因组调查发现的深海极端环境如热液喷口富集的重要微生物类群,在海洋碳、氮、氢、硫循环中发挥重要作用。目前对这个纲的研究较少,主要来自于16S rRNA的分类鉴定以及深度测序拼接的基因组序列分析。本文总结了目前对Epsilon-变形菌纲的生态分布及多样性调查研究结果,并对深海热液喷口的Epsilon-变形菌的多种能量代谢方式、强大的趋化运动系统以及与底栖生物的共生关系进行了阐述。这些结果初步揭示了Epsilon-变形菌对深海极端环境的适应机制,并推动对这个极端环境富集的细菌分支的生物学特征认知与资源利用。

    Abstract:

    Recent metagenomic surveys suggested that Epsilon-proteobacteria is abundant in deep-sea extreme environment such as hydrothermal vent and they play important role in carbon, nitrogen, hydrogen, and sulfur recycle in the ocean. A few studies have been carried out on this class of bacteria, mainly including 16S rRNA taxonomic identification and genomic sequence analysis from deep sequencing. This review summarized current understanding of ecological distribution and diversity of Epsilon-proteobacteria. Meanwhile, we elaborated diverse energy metabolism, powerful chemotaxis and motility, and relationships with benthic animals of Epsilon-proteobacteria. Meanwhile, we also discuss the adaptation mechanism of Epsilon-proteobacteria to deep-sea extreme environment to expedite our understanding and bioprospecting of the unique biological features of Epsilon-proteobacteria.

    参考文献
    [1] Beeby M. Motility in the epsilon-proteobacteria. Current Opinion in Microbiology, 2015, 28:115-121.
    [2] Pérez-Rodríguez I, Ricci J, Voordeckers JW, Starovoytov V, Vetriani C. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology, 2010,60(5):1182-1186.
    [3] Toh H, Sharma VK, Oshima K, Kondo S, Hattori M, Ward FB, Free A, Taylor TD. Complete genome sequences of Arcobacter butzleri ED-1 and Arcobacter sp. strain L, both isolated from a microbial fuel cell. Journal of Bacteriology, 2011, 193(22):6411-6412.
    [4] Hernández J, Fayos A, Alonso JL, Owen RJ. Ribotypes and AP-PCR fingerprints of thermophilic campylobacters from marine recreational waters. Journal of Applied Bacteriology, 1996, 80(2):157-164.
    [5] Campbell BJ, Engel AS, Porter ML, Takai K. The versatile ∈-proteobacteria:key players in sulphidic habitats. Nature Reviews Microbiology, 2006, 4(6):458-468.
    [6] Nakagawa T, Takai K, Suzuki Y, Hirayama H, Konno U, Tsunogai U, Horikoshi K. Geomicrobiological exploration and characterization of a novel deep-sea hydrothermal system at the TOTO caldera in the Mariana Volcanic Arc. Environmental Microbiology, 2006, 8(1):37-49.
    [7] Campbell BJ, Smith JL, Hanson TE, Klotz MG, Stein LY, Lee CK, Wu DY, Robinson JM, Khouri HM, Eisen JA, Cary SC. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola. PLoS Genetics, 2009, 5(2):e1000362.
    [8] Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G, Teeling H, Labrenz M, Jürgens K. Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(2):506-510.
    [9] Noguerola I, Picazo A, Llirós M, Camacho A, Borrego CM. Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiology Ecology, 2015, 91(7):fiv086.
    [10] Meyer JL, Huber JA. Strain-level genomic variation in natural populations of Lebetimonas from an erupting deep-sea volcano. The ISME Journal, 2014, 8(4):867-880.
    [11] Akerman NH, Butterfield DA, Huber JA. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Frontiers in Microbiology, 2013, 4:185.
    [12] Vetriani C, Voordeckers JW, Crespo-Medina M, O'Brien CE, Giovannelli D, Lutz RA. Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap). The ISME Journal, 2014, 8(7):1510-1521.
    [13] Wirsen CO, Sievert SM, Cavanaugh CM, Molyneaux SJ, Ahmad A, Taylor LT, DeLong EF, Taylor CD. Characterization of an autotrophic sulfide-oxidizing marine Arcobacter sp. that produces filamentous sulfur. Applied and Environmental Microbiology, 2002, 68(1):316-325.
    [14] Stocker R, Seymour JR. Ecology and physics of bacterial chemotaxis in the ocean. Microbiology and Molecular Biology Reviews, 2012, 76(4):792-812.
    [15] Petroff AP, Wu XL, Libchaber A. Fast-moving bacteria self-organize into active two-dimensional crystals of rotating cells. Physical Review Letters, 2015, 114(15):158102.
    [16] Chen SY, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, Li Z, Shi J, Tocheva EI, Müller A, Dobro MJ, Jensen GJ. Structural diversity of bacterial flagellar motors. The EMBO Journal, 2011, 30(14):2972-2981.
    [17] Gao BL, Lara-Tejero M, Lefebre M, Goodman AL, Galan JE. Novel components of the flagellar system in Epsilonproteobacteria. MBio, 2014, 5(3):e01349-14.
    [18] Beeby M, Ribardo DA, Brennan CA, Ruby EG, Jensen GJ, Hendrixson DR. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(13):E1917-E1926.
    [19] Lertsethtakarn P, Ottemann KM, Hendrixson DR. Motility and chemotaxis in Campylobacter and Helicobacter. Annual Review of Microbiology, 2011, 65:389-410.
    [20] Howitt MR, Lee JY, Lertsethtakarn P, Vogelmann R, Joubert LM, Ottemann KM, Amieva MR. ChePep controls Helicobacter pylori infection of the gastric glands and chemotaxis in the Epsilonproteobacteria. MBio, 2011, 2(4):e00098-11.
    [21] Assié A, Borowski C, van der Heijden K, Raggi L, Geier B, Leisch N, Schimak MP, Dubilier N, Petersen JM. A specific and widespread association between deep-sea Bathymodiolus mussels and a novel family of Epsilonproteobacteria. Environmental Microbiology Reports, 2016, 8(5):805-813.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

臧扬,高贝乐. 深海热液口Epsilon-变形菌的物种多样性与环境适应机理[J]. 微生物学报, 2017, 57(9): 1392-1399

复制
分享
文章指标
  • 点击次数:1131
  • 下载次数: 2329
  • HTML阅读次数: 1058
  • 引用次数: 0
历史
  • 收稿日期:2017-05-23
  • 最后修改日期:2017-06-23
  • 在线发布日期: 2017-08-31
文章二维码