超嗜热古菌整合性遗传元件的研究进展
作者:
基金项目:

国家自然科学基金(41376137)


Advances in studies on the integrative genetic elements of hyperthermophilic archaea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌中整合性遗传元件与DNA修饰和防御、毒力因子传播以及次级代谢等生理功能存在关联,而相关研究在超嗜热古菌中尚处于起步阶段。本文综述了超嗜热古菌中整合性病毒、质粒及基因组岛等整合性遗传元件的分类、整合及维持机制。展示了整合性遗传元件参与的水平基因转移过程在超嗜热古菌基因组演化中扮演的重要角色。整合性遗传元件相关功能基因组学研究为理解超嗜热古菌的多样性及其环境适应性机制提供了新的视角。

    Abstract:

    The integrative genetic elements involved in the spreading of virulence factors, defense and DNA modification, and secondary metabolism have been characterized in bacteria, but similar investigations on the function of the hyperthermophilic archaeal counterparts are still very rare. This review summarizes the reported groups of integrative genetic elements, the mechanism of integration and maintenance of such genetic elements in hyperthermophilic archaea. The horizontal gene transfer processes mediated by integrative genetic elements play important roles in the genome evolution of hyperthermophilic archaea. Functional genomic studies of integrative genetic elements provide a new perspective for understanding the diversity and environmental adaptability of hyperthermophilic archaea.

    参考文献
    [1] Wozniak RAF, Waldor MK. Integrative and conjugative elements:mosaic mobile genetic elements enabling dynamic lateral gene flow. Nature Reviews Microbiology, 2010, 8(8):552-563.
    [2] Martin-Cuadrado AB, Pašić L, Rodriguez-Valera F. Diversity of the cell-wall associated genomic island of the archaeon Haloquadratum walsbyi. BMC Genomics, 2015, 16(1):603.
    [3] Makarova KS, Wolf YI, Snir S, Koonin EV. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems. Journal of Bacteriology, 2011, 193(21):6039-6056.
    [4] Stetter KO. A brief history of the discovery of hyperthermophilic life. Biochemical Society Transactions, 2013, 41(1):416-420.
    [5] van Wolferen M, Ajon M, Driessen AJM, Albers SV. How hyperthermophiles adapt to change their lives:DNA exchange in extreme conditions. Extremophiles, 2013, 17(4):545-563.
    [6] Wang HN, Peng N, Shah SA, Huang L, She QX. Archaeal extrachromosomal genetic elements. Microbiology and Molecular Biology Reviews, 2015, 79(1):117-152.
    [7] Häring M, Vestergaard G, Rachel R, Chen LM, Garrett RA, Prangishvili D. Virology:independent virus development outside a host. Nature, 2005, 436(7054):1101-1102.
    [8] Daifuku T, Yoshida T, Sako Y. Genome variation in the hyperthermophilic archaeon Aeropyrum. Mobile Genetic Elements, 2013, 3(5):e26833.
    [9] Gorlas A, Koonin EV, Bienvenu N, Prieur D, Geslin C. TPV1, the first virus isolated from the hyperthermophilic genus Thermococcus. Environmental Microbiology, 2012, 14(2):503-516.
    [10] She Q, Shen B, Chen L. Archaeal integrases and mechanisms of gene capture. Biochemical Society Transactions, 2004, 32(2):222-226.
    [11] Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T. Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Research, 2005, 15(3):352-363.
    [12] Zivanovic Y, Armengaud J, Lagorce A, Leplat C, Guérin P, Dutertre M, Anthouard V, Forterre P, Wincker P, Confalonieri F. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea. Genome Biology, 2009, 10(6):R70.
    [13] She QX, Brügger K, Chen LM. Archaeal integrative genetic elements and their impact on genome evolution. Research in Microbiology, 2002, 153(6):325-332.
    [14] Arnold HP, She QX, Phan H, Stedman K, Prangishvili D, Holz I, Kristjansson JK, Garrett R, Zillig W. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Molecular Microbiology, 1999, 34(2):217-226.
    [15] Schleper C, Holz I, Janekovic D, Murphy J, Zillig W. A multicopy plasmid of the extremely thermophilic archaeon Sulfolobus effects its transfer to recipients by mating. Journal of Bacteriology, 1995, 177(15):4417-4426.
    [16] Stedman KM, She QX, Phan H, Holz I, Singh H, Prangishvili D, Garrett R, Zillig W. pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus:insights into recombination and conjugation in Crenarchaeota. Journal of Bacteriology, 2000, 182(24):7014-7020.
    [17] Erauso G, Stedman KM, van de Werken HJG, Zillig W, van der Oost J. Two novel conjugative plasmids from a single strain of Sulfolobus. Microbiology, 2006, 152(7):1951-1968.
    [18] Liu GN, She QX, Garrett RA. Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated Sulfolobus species. Nucleic Acids Research, 2016, 44(9):4233-4242.
    [19] Krupovic M, Gonnet M, Hania WB, Forterre P, Erauso G. Insights into dynamics of mobile genetic elements in hyperthermophilic environments from five new Thermococcus plasmids. PLoS One, 2013, 8(1):e49044.
    [20] Krupovič M, Gribaldo S, Bamford DH, Forterre P. The evolutionary history of archaeal MCM helicases:a case study of vertical evolution combined with hitchhiking of mobile genetic elements. Molecular Biology and Evolution, 2010, 27(12):2716-2732.
    [21] Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands:tools of bacterial horizontal gene transfer and evolution. FEMS Microbiology Reviews, 2009, 33(2):376-393.
    [22] Hapfelmeier S, Stecher B, Barthel M, Kremer M, Müller AJ, Heikenwalder M, Stallmach T, Hensel M, Pfeffer K, Akira S, Hardt WD. The Salmonella pathogenicity island (SPI)-2 and SPI-1 type Ⅲ secretion systems allow Salmonella serovar typhimurium to trigger colitis via MyD88-dependent and MyD88-independent mechanisms. The Journal of Immunology, 2005, 174(3):1675-1685.
    [23] Xu MJ, Wang JH, Bu XL, Yu HL, Li P, Ou HY, He Y, Xu FD, Xu XY, Zhu XM, Ao P, Xu J. Deciphering the streamlined genome of Streptomyces xiamenensis 318 as the producer of the anti-fibrotic drug candidate xiamenmycin. Scientific Reports, 2016, 6:18977.
    [24] White JR, Escobar-Paramo P, Mongodin EF, Nelson KE, DiRuggiero J. Extensive genome rearrangements and multiple horizontal gene transfers in a population of Pyrococcus isolates from Vulcano Island, Italy. Applied and Environmental Microbiology, 2008, 74(20):6447-6451.
    [25] Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, Delong EF, Chisholm SW. Genomic islands and the ecology and evolution of Prochlorococcus. Science, 2006, 311:1768-1770.
    [26] Cuadros-Orellana S, Martin-Cuadrado AB, Legault B, D'Auria G, Zhaxybayeva O, Papke RT, Rodriguez-Valera F. Genomic plasticity in prokaryotes:the case of the square haloarchaeon. The ISME Journal, 2007, 1(3):235-245.
    [27] Robinson NP, Bell SD. Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(14):5806-5811.
    [28] Li Z, Li XG, Xiao X, Xu J. An integrative genomic island affects the adaptations of the piezophilic hyperthermophilic archaeon Pyrococcus yayanosii to high temperature and high hydrostatic pressure. Frontiers in Microbiology, 2016, 7:1927.
    [29] Esposito D, Scocca JJ. The integrase family of tyrosine recombinases:evolution of a conserved active site domain. Nucleic Acids Research, 1997, 25(18):3605-3614.
    [30] Zhan ZY, Zhou J, Huang L. Site-specific recombination by SSV2 integrase:substrate requirement and domain functions. Journal of Virology, 2015, 89(21):10934-10944.
    [31] Cortez D, Quevillon-Cheruel S, Gribaldo S, Desnoues N, Sezonov G, Forterre P, Serre MC. Evidence for a Xer/dif system for chromosome resolution in archaea. PLoS Genetics, 2010, 6(10):e1001166.
    [32] Reiter WD, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Research, 1989, 17(5):1907-1914.
    [33] Luo YN, Pfister P, Leisinger T, Wasserfallen A. The genome of archaeal prophage ΨM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. Journal of Bacteriology, 2001, 183(19):5788-5792.
    [34] Contursi P, Fusco S, Cannio R, She QX. Molecular biology of Fuselloviruses and their satellites. Extremophiles, 2014, 18(3):473-489.
    [35] Campanaro S, Vezzi A, Vitulo N, Lauro FM, D'Angelo M, Simonato F, Cestaro A, Malacrida G, Bertoloni G, Valle G, Bartlett DH. Laterally transferred elements and high pressure adaptation in Photobacterium profundum strains. BMC Genomics, 2005, 6(1):122.
    [36] Klockgether J, Reva O, Larbig K, Tümmler B. Sequence analysis of the mobile genome island pKLC102 of Pseudomonas aeruginosa C. Journal of Bacteriology, 2004, 186(2):518-534.
    [37] Wozniak RAF, Waldor MK. A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genetics, 2009, 5(3):e1000439.
    [38] Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiology and Molecular Biology Reviews, 2013, 77(1):53-72.
    [39] Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annual Review of Genetics, 2011, 45(1):61-79.
    [40] Cooper CR, Daugherty AJ, Tachdjian S, Blum PH, Kelly RM. Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus. Biochemical Society Transactions, 2009, 37(1):123-126.
    [41] van Melderen L, de Bast MS. Bacterial toxin-antitoxin systems:more than selfish entities? PLoS Genetics, 2009, 5(3):e1000437.
    [42] Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC. A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Research, 2014, 42(7):4590-4605.
    [43] Loenen WAM, Raleigh EA. The other face of restriction:modification-dependent enzymes. Nucleic Acids Research, 2014, 42(1):56-69.
    [44] DiRuggiero J, Dunn D, Maeder DL, Holley-Shanks R, Chatard J, Horlacher R, Robb FT, Boos W, Weiss RB. Evidence of recent lateral gene transfer among hyperthermophilic archaea. Molecular Microbiology, 2000, 38(4):684-693.
    [45] Tagashira K, Fukuda W, Matsubara M, Kanai T, Atomi H, Imanaka T. Genetic studies on the virus-like regions in the genome of hyperthermophilic archaeon, Thermococcus kodakarensis. Extremophiles, 2013, 17(1):153-160.
    [46] Soucy SM, Huang JL, Gogarten JP. Horizontal gene transfer:building the web of life. Nature Reviews Genetics, 2015, 16(8):472-482.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李臻,宋庆浩,徐俊. 超嗜热古菌整合性遗传元件的研究进展[J]. 微生物学报, 2017, 57(9): 1400-1408

复制
分享
文章指标
  • 点击次数:804
  • 下载次数: 2186
  • HTML阅读次数: 870
  • 引用次数: 0
历史
  • 收稿日期:2017-06-11
  • 最后修改日期:2017-07-02
  • 在线发布日期: 2017-08-31
文章二维码