可培养盐碱菌多样性的研究进展
作者:
基金项目:

国家自然科学基金(31570110,31370158);中国农业科学院基本科研业务费项目(0042014011,1610042017001)


Biodiversity of culture-dependent haloalkaliphilic microorganisms
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    存在于高盐强碱极端环境的微生物因其独特的生命方式,引起了广泛的关注。根据盐碱环境所含的可溶性盐成分,可分为"NaCl型"和"苏打型(Na2CO3/NaHCO3)"两大类,前者的碱性pH值较低而后者碱性pH值较高。本文总结了盐碱菌适宜生长条件在盐度0.5 mol/L和碱性pH 9.0之上且有效发表的标准菌株,并对这些菌株的生物多样性及生理特性进行了阐述;可培养盐碱细菌的数量及其多样性远远大于盐碱古菌,但是盐碱细菌对高盐度和强碱性pH依赖程度相对较低。盐碱细菌主要组成依次为芽孢杆菌纲(Bacilli,占总数约40%)、γ-变形菌纲(γ-Proteobacteria,30%)、梭菌纲(Clostridia,11%)、δ-变形菌纲(δ-Proteobacteria,6%)和放线菌纲(Actinobacteria,6%),而盐碱古菌主要组成为盐古菌纲(Halobacteria,92%)和甲烷微菌纲(Methanomicrobia,8%)。这些极端微生物在生物地球化学过程中或生态循环中扮演着重要的角色和功能,挖掘和利用盐碱菌具有重要意义。

    Abstract:

    Microorganisms growing at high salinity and elevated alkaline environments have gained wide attention in term of their unique properties. According to the soluble composition, saline-alkaline environment can be two groups, i.e. "NaCl type" and "soda type (Na2CO3/NaHCO3)". The alkaline pH of the former is relatively low, and that of the latter is higher. This review summarizes validated haloalkaliphilic type strains for optimal growth requiring Na+ concentrations above 0.5 mol/L and an alkaline pH of 9, and their biodiversity and physiological characteristics. The biodiversity of the halophilic bacteria is far greater than that of halophilic archaea. Halophilic bacteria are mainly composed of Bacilli (40% of the total), gamma-Proteobacteria (30%), Clostridia (11%), delta-Proteobacteria (6%) and Actinobacteria (6%); Halophilic archaea are Halobacteria (92%) and Methanomicrobia (8%). These extremophiles under double stress play essential roles and functions in biogeochemical processes and the ecological function.

    参考文献
    [1] Sorokin DY, Kuenen JG, Muyzer G. The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Frontiers in Microbiology, 2011, 2:44.
    [2] Kevbrin VV, Romanek CS, Wiegel J. Alkalithermophiles:a double challenge from extreme environments//Seckbach J. Origins. Dordrecht:Kluwer Academic, 2005:395-412.
    [3] Rothschild LJ, Mancinelli RL. Life in extreme environments. Nature, 2001, 409(6832):1092-1101.
    [4] McEwen AS, Ojha L, Dundas CM, Mattson SS, Byrne S, Wray JJ, Cull SC, Murchie SL, Thomas N, Gulick VC. Seasonal flows on warm martian slopes. Science, 2011, 333(6043):740-743.
    [5] Banciu HL, Sorokin DY. Adaptation in haloalkaliphiles and natronophilic bacteria//Seckbach J, Oren A, Stan-Lotter H. Polyextremophiles. Netherlands:Springer, 2013:121-178.
    [6] Zhao BS, Yan YC, Chen SL. How could haloalkaliphilic microorganisms contribute to biotechnology? Canadian Journal of Microbiology, 2014, 60(11):717-727.
    [7] Zhang W, Feng YJ. Physico-chemical properties and ecological recovery of saline-alkaline soil in songnen plain. Acta Pedologica Sinica, 2009, 46(1):169-172. (in Chinese)张巍, 冯玉杰. 松嫩平原盐碱土理化性质与生态恢复. 土壤学报, 2009, 46(1):169-172.
    [8] Grant WD, Mwatha WE. Bacteria from alkaline, saline environments//Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A. Recent Advances in Microbial Ecology. Tokyo, Japan:Japan Scientific Societies Press, 1989:64-67.
    [9] Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Applied and Environmental Microbiology, 2007, 73(16):5130-5137.
    [10] Sorokin DY, Van Den Bosch PL, Abbas B, Janssen AJH, Muyzer G. Microbiological analysis of the population of extremely haloalkaliphilic sulfur-oxidizing bacteria dominating in lab-scale sulfide-removing bioreactors. Applied Microbiology and Biotechnology, 2008, 80(6):965-975.
    [11] Baas Becking LGM. Geobiologie of Inleiding Tot de Milieukunde. The Hague, the Netherlands:W.P. van Stockum & Zoon, 1934.
    [12] O'Malley MA. The nineteenth century roots of ‘everything is everywhere’. Nature Reviews Microbiology, 2007, 5(8):647-651.
    [13] Soliman GSH, Trüper HG. Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene:I. Abt. Originale C:Allgemeine, angewandte und ökologische Mikrobiologie, 1982, 3(2):318-329.
    [14] Wiegel J. Anaerobic alkaliphiles and alkaliphilic poly-extremophiles//Horikoshi K, Antranikian G, Bull AT, Robb FT, Stetter KO. Extremophiles Handbook. Tokyo, Japan:Springer, 2011:81-97.
    [15] Zhao BS, Chen SL. Alkalitalea saponilacus gen. nov., sp. Nov., an obligately anaerobic, alkaliphilic, xylanolytic bacterium from a meromictic soda lake. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(11):2618-2623.
    [16] Zhang SS, Li ZJ, Yan YC, Zhang CL, Li Jun, Zhao BS. Bacillus urumqiensis sp. nov., a moderately haloalkaliphilic bacterium isolated from a salt lake. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(6):2305-2312.
    [17] Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J. Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(11):2507-2512.
    [18] Zhang DY, Berry JP, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li GH, Davison PA, Xu J, Aries E, Huang WE. Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. The ISME Journal, 2015, 9(3):603-614.
    [19] Wang XZ, Zhao XH, Li HB, Jia JL, Liu YQ, Ejenavi O, Ding AZ, Sun YJ, Zhang DY. Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Research in Microbiology, 2016, 167(9/10):731-744.
    [20] 王春裕. 中国东北盐渍土. 北京:科学出版社, 2004.
    [21] 郑喜玉, 张明刚, 徐昶, 李秉孝. 中国盐湖志. 北京:科学出版社, 2002.
    [22] Ahn AC, Meier-Kolthoff JP, Overmars L, Richter M, Woyke T, Sorokin DY, Muyzer G. Genomic diversity within the haloalkaliphilic genus Thioalkalivibrio. PLoS One, 2017, 12(3):e0173517.
    [23] Aliyu H, De Maayer P, Cowan D. The genome of the Antarctic polyextremophile Nesterenkonia sp. AN1 reveals adaptive strategies for survival under multiple stress conditions. FEMS Microbiology Ecology, 2016, 92(4):fiw032.
    [24] Mesbah NM, Häänelt I, Zhao BS, Müller V. Microbial adaptation to saline environments:lessons from the genomes of Natranaerobius thermophilus and Halobacillus halophilus//Papke RT, Oren A. Halophiles:Genetics and Genomes. Norfolk, UK:Caister Academic Press, 2014:107-128.
    [25] Zhao BS, Mesbah NM, Dalin E, Goodwin L, Nolan M, Pitluck S, Chertkov O, Brettin TS, Han J, Larimer FW, Land ML, Hauser L, Kyrpides N, Wiegel J. Complete genome sequence of the anaerobic, halophilic alkalithermophile Natranaerobius thermophilus JW/NM-WN-LF. Journal of Bacteriology, 2011, 193(15):4023-4024.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵百锁,李俊. 可培养盐碱菌多样性的研究进展[J]. 微生物学报, 2017, 57(9): 1409-1420

复制
分享
文章指标
  • 点击次数:1210
  • 下载次数: 2154
  • HTML阅读次数: 854
  • 引用次数: 0
历史
  • 收稿日期:2017-06-22
  • 最后修改日期:2017-07-11
  • 在线发布日期: 2017-08-31
文章二维码