第二信使分子c-di-AMP调控细菌中钾离子转运的机制
作者:
基金项目:

国家自然科学基金(31270105);中央高校基本科研专科基金(2662015PY175)


Second messenger c-di-AMP regulates potassium ion transport in bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    钾离子(K+)是维持生命体存活的必需元素。原核生物进化出一系列K+转运系统,如Kdp系统﹑Ktr系统和Trk系统等,来维持胞内相对恒定的K+浓度。环二腺苷酸单磷酸(cyclic diadenosinemonophosphate,c-di-AMP)是新发现的第二信使分子,可以与K+转运系统中的KdpD、KtrA和TrkA结合。当胞内c-di-AMP浓度高时,c-di-AMP会与K+转运蛋白结合,降低其转运活性。c-di-AMP的靶标除蛋白质外,还有RNA元件,即c-di-AMP的核糖开关。高浓度的c-di-AMP与其核糖开关结合后,可抑制下游K+转运蛋白编码基因,如kdpktrtrk操纵子以及kup基因的转录,从而调控K+的转运。总之,胞内高浓度的c-di-AMP抑制细菌对K+的吸收。c-di-AMP调控K+转运机制的研究,不仅丰富了K+转运的调控方式,而且也扩大了c-di-AMP的调控范围,为细菌的利用与防治提供了新思路。

    Abstract:

    Potassium ion (K+) is a ubiquitous monovalent cation necessary for all living cells. To maintain homeostatic intracellular K+ concentration, most prokaryotes possess several unique K+ uptake systems to transport K+. A newly found second messenger-cyclic diadenosine monophosphate (c-di-AMP), plays an important role in regulating K+ transport by binding to several K+ transport-related proteins, such as KdpD, KtrA and TrkA. When the intracellular c-di-AMP concentration is high, c-di-AMP can bind its receptor or effector proteins to inhibit transporter activity. In addition, riboswitch could also be targeted by c-di-AMP to control the transcription of downstream K+ transporter genes, including ktr, trk and kdp operon and kup gene. High intracellular c-di-AMP concentration depresses bacterial K+ uptake. Therefore, understanding the mechanism of K+ transport inhibition by c-di-AMP not only enriches the regulation mode of the K+ transport, but also sparkle new ideas for the control and applications of bacteria.

    参考文献
    [1] Gründling A. Potassium uptake systems in Staphylococcus aureus:new stories about ancient systems. mBio, 2013, 4(5):e00784-13.
    [2] Zacchia M, Abategiovanni ML, Stratigis S, Capasso G. Potassium:from physiology to clinical implications. Kidney Diseases, 2016, 2(2):72-79.
    [3] Ballal A, Basu B, Apte SK. The Kdp-ATPase system and its regulation. Journal of Biosciences, 2007, 32(3):559-568.
    [4] Nanatani K, Shijuku T, Takano Y, Zulkifli L, Yamazaki T, Tominaga A, Souma S, Onai K, Morishita M, Ishiura M, Hagemann M, Suzuki I, Maruyama H, Arai F, Uozumi N. Comparative analysis of kdp and ktr mutants reveals distinct roles of the potassium transporters in the model cyanobacterium Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 2015, 197(4):676-687.
    [5] Epstein W. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research and Molecular Biology, 2003, 75:293-320.
    [6] Ali MK, Li X, Tang Q, Liu X, Chen F, Xiao J, Ali M, Chou SH, He J. Regulation of inducible potassium transporter KdpFABC by the KdpD/KdpE two-component system in Mycobacterium smegmatis. Frontiers in Microbiology, 2017, 8:570.
    [7] Diskowski M, Mikusevic V, Stock C, Hänelt I. Functional diversity of the superfamily of K+ transporters to meet various requirements. Biological Chemistry, 2015, 396(9/10):1003-1014.
    [8] Booth IR, Miller S, Müller A, Lehtovirta-Morley L. The evolution of bacterial mechanosensitive channels. Cell Calcium, 2015, 57(3):140-150.
    [9] Loukin SH, Kuo MMC, Zhou XL, Haynes WJ, Kung C, Saimi Y. Microbial K+ channels. The Journal of General Physiology, 2005, 125(6):521-527.
    [10] Sato Y, Nanatani K, Hamamoto S, Shimizu M, Takahashi M, Tabuchi-Kobayashi M, Mizutani A, Schroeder JI, Souma S, Uozumi N. Defining membrane spanning domains and crucial membrane-localized acidic amino acid residues for K+ transport of a Kup/HAK/KT-type Escherichia coli potassium transporter. Journal of Biochemistry, 2014, 155(5):315-323.
    [11] Huang CS, Pedersen BP, Stokes DL. Crystal structure of the potassium-importing KdpFABC membrane complex. Nature, 2017, 546(7660):681-685.
    [12] Epstein W. The KdpD sensor kinase of Escherichia coli responds to several distinct signals to turn on expression of the Kdp transport system. Journal of Bacteriology, 2016, 198(2):212-220.
    [13] Greie JC. The KdpFABC complex from Escherichia coli:a chimeric K+ transporter merging ion pumps with ion channels. European Journal of Cell Biology, 2011, 90(9):705-710.
    [14] Surmann K, Laermann V, Zimmann P, Altendorf K, Hammer E. Absolute quantification of the Kdp subunits of Escherichia coli by multiple reaction monitoring. Proteomics, 2014, 14(13/14):1630-1638.
    [15] Gannoun-Zaki L, Belon C, Dupont C, Hilbert F, Kremer L, Blanc-Potard AB. Overexpression of the Salmonella KdpF membrane peptide modulates expression of kdp genes and intramacrophage growth. FEMS Microbiology Letters, 2014, 359(1):34-41.
    [16] Zulkifli L, Akai M, Yoshikawa A, Shimojima M, Ohta H, Guy HR, Uozumi N. The KtrA and KtrE subunits are required for Na+-dependent K+ uptake by KtrB across the plasma membrane in Synechocystis sp. strain PCC 6803. Journal of Bacteriology, 2010, 192(19):5063-5070.
    [17] Johnson HA, Hampton E, Lesley SA. The Thermotoga maritima Trk potassium transporter——from frameshift to function. Journal of Bacteriology, 2009, 191(7):2276-2284.
    [18] Cholo MC, Boshoff HI, Steel HC, Cockeran R, Matlola NM, Downing KJ, Mizrahi V, Anderson R. Effects of clofazimine on potassium uptake by a Trk-deletion mutant of Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 2006, 57(1):79-84.
    [19] Cholo MC, van Rensburg EJ, Osman AG, Anderson R. Expression of the genes encoding the Trk and Kdp potassium transport systems of Mycobacterium tuberculosis during growth in vitro. Biomed Research International, 2015, 2015:608682.
    [20] Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(22):9084-9089.
    [21] Witte G, Hartung S, Büttner K, Hopfner KP. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Molecular Cell, 2008, 30(2):167-178.
    [22] Zheng C, Wang JP, Luo YC, Fu Y, Su JM, He J. Highly efficient enzymatic preparation of c-di-AMP using the diadenylate cyclase DisA from Bacillus thuringiensis. Enzyme and Microbial Technology, 2013, 52(6/7):319-324.
    [23] Tang Q, Luo YC, Zheng C, Yin K, Ali MK, Li XF, He J. Functional analysis of a c-di-AMP-specific phosphodiesterase MsPDE from Mycobacterium smegmatis. International Journal of Biological Science, 2015, 11(7):813-824.
    [24] Bai YL, Yang J, Eisele LE, Underwood AJ, Koestler BJ, Waters CM, Metzger DW, Bai GC. Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. Journal of Bacteriology, 2013, 195(22):5123-5132.
    [25] Zhang L, Li WH, He ZG. DarR, a TetR-like transcriptional factor, is a cyclic di-AMP-responsive repressor in Mycobacterium smegmatis. Journal of Biological Chemistry, 2013, 288(5):3085-3096.
    [26] Oppenheimer-Shaanan Y, Wexselblatt E, Katzhendler J, Yavin E, Ben-Yehuda S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Reports, 2011, 12(6):594-601.
    [27] Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathogens, 2011, 7(9):e1002217.
    [28] Cho KH, Kang SO. Streptococcus pyogenes c-di-AMP phosphodiesterase, GdpP, influences SpeB processing and virulence. PLoS One, 2013, 8(7):e69425.
    [29] Huynh TN, Luo SK, Pensinger D, Sauer JD, Tong L, Woodward JJ. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7):E747-756.
    [30] Zheng C, Ma Y, Wang X, Xie YQ, Ali MK, He J. Functional analysis of the sporulation-specific diadenylate cyclase CdaS in Bacillus thuringiensis. Frontiers in Microbiology, 2015, 6:908.
    [31] Gundlach J, Rath H, Herzberg C, Mäder U, Stülke J. Second messenger signaling in Bacillus subtilis:accumulation of cyclic di-AMP inhibits biofilm formation. Frontiers in Microbiology, 2016, 7:804.
    [32] Corrigan RM, Gründling A. Cyclic di-AMP:another second messenger enters the fray. Nature Reviews Microbiology, 2013, 11(8):513-524.
    [33] Commichau FM, Dickmanns A, Gundlach J, Ficner R, Stülke J. A jack of all trades:the multiple roles of the unique essential second messenger cyclic di-AMP. Molecular Microbiology, 2015, 97(2):189-204.
    [34] Sureka K, Choi PH, Precit M, Delince M, Pensinger DA, Huynh TN, Jurado AR, Goo YA, Sadilek M, Iavarone AT, Sauer JD, Tong L, Woodward JJ. The cyclic dinucleotide c-di-AMP is an allosteric regulator of metabolic enzyme function. Cell, 2014, 158(6):1389-1401.
    [35] Ramesh A. Second messenger-sensing riboswitches in bacteria. Seminars in Cell & Developmental Biology, 2015, 47-48:3-8.
    [36] Campeotto I, Zhang Y, Mladenov MG, Freemont PS, Gründling A. Complex structure and biochemical characterization of the Staphylococcus aureus cyclic diadenylate monophosphate (c-di-AMP)-binding protein PstA, the founding member of a new signal transduction protein family. Journal of Biological Chemistry, 2015, 290(5):2888-2901.
    [37] Müller M, Hopfner KP, Witte G. c-di-AMP recognition by Staphylococcus aureus PstA. FEBS Letters, 2015, 589(1):45-51.
    [38] Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science, 2010, 328(5986):1703-1705.
    [39] Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Gründling A. Binding of cyclic di-AMP to the Staphylococcus aureus sensor kinase KdpD occurs via the universal stress protein domain and downregulates the expression of the Kdp potassium transporter. Journal of Bacteriology, 2016, 198(1):98-110.
    [40] Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS. Structural studies of potassium transport protein KtrA regulator of conductance of K+(RCK) C domain in complex with cyclic diadenosine monophosphate (c-di-AMP). Journal of Biological Chemistry, 2015, 290(26):16393-16402.
    [41] Chin KH, Liang JM, Yang JG, Shih MS, Tu ZL, Wang YC, Sun XH, Hu NJ, Liang ZX, Dow JM, Ryan PR, Chou SH. Structural insights into the distinct binding mode of cyclic di-AMP with SaCpaA_RCK. Biochemistry, 2015, 54(31):4936-4951.
    [42] Du B, Sun JH. Cyclic diadenosine monophosphate——a new second messenger in bacteria-a review. Acta Microbiologica Sinica, 2015, 55(2):126-133. (in Chinese)杜斌, 孙建和. 环二腺苷酸(c-di-AMP)——细菌的一种新型第二信使. 微生物学报, 2015, 55(2):126-133.
    [43] Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1/2):17-24.
    [44] Breaker RR. Riboswitches and the RNA world. Cold Spring Harbor Perspectives in Biology, 2012, 4(2):a003566.
    [45] Jones CP, Ferré-D'Amaré AR. Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. The EMBO Journal, 2014, 33(22):2692-2703.
    [46] Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(17):6421-6426.
    [47] Nelson JW, Sudarsan N, Furukawa K, Weinberg Z, Wang JX, Breaker RR. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nature Chemical Biology, 2013, 9(12):834-839.
    [48] Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20):6432-6435.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡霞,何进. 第二信使分子c-di-AMP调控细菌中钾离子转运的机制[J]. 微生物学报, 2017, 57(10): 1434-1442

复制
分享
文章指标
  • 点击次数:1186
  • 下载次数: 2527
  • HTML阅读次数: 996
  • 引用次数: 0
历史
  • 收稿日期:2016-11-16
  • 最后修改日期:2017-01-06
  • 在线发布日期: 2017-09-29
文章二维码