北黄海沉积物可培养产蛋白酶细菌分离鉴定
作者:
基金项目:

中国科学院战略性先导科技专项(XDA11020403);山东省自主创新及成果转化专项(2014ZZCX07303)


Cultivable protease-producing bacteria in the sediments of North Yellow Sea
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]揭示北黄海沉积物中可培养产胞外蛋白酶细菌及蛋白酶多样性,增加人们对北黄海生态系统中产蛋白酶菌多样性的认识,为海洋产蛋白酶微生物的挖掘提供菌群资源。[方法]分别将5个北黄海沉积物样品梯度稀释涂布至酪蛋白明胶筛选平板,选择性分离产蛋白酶细菌;并通过分析基于16S rRNA基因序列的系统发育关系,揭示这些细菌的分类地位和遗传多样性;分别测定胞外蛋白酶活性并对酶活较高的39株菌进行基于苯甲基磺酰氟(PMSF,丝氨酸蛋白酶抑制剂)、邻菲罗啉(o-phenanthroline,O-P,金属蛋白酶抑制剂)、E-64(半胱氨酸蛋白酶抑制剂)和pepstatin A(天冬氨酸蛋白酶抑制剂)4种抑制剂的酶活抑制实验以及所有菌株对3种底物(酪蛋白、明胶、弹性蛋白)的水解能力;分析这些细菌所产胞外蛋白酶的特性及多样性。[结果]从5个北黄海沉积物样品中分离获得66株产蛋白酶细菌,这些菌株隶属于Bacteroidetes、Proteobacteria、Actinobacteria和Firmicutes 4个门的7个属,其中Pseudoalteromonas(69.9%)、Sulfitobacter(12.1%)和Salegentibacter(10.6%)是优势菌群;沉积物中可培养的产蛋白酶细菌的丰度为104 CFU/g;蛋白酶酶活抑制实验表明所有测定菌株产生的胞外蛋白酶属于丝氨酸蛋白酶和/或金属蛋白酶,仅有少数菌株所产蛋白酶具有半胱氨酸蛋白酶或天冬氨酸蛋白酶活性。[结论]北黄海沉积物中可培养产蛋白酶细菌类群较为丰富,PseudoalteromonasSulfitobacterSalegentibacter菌株是优势菌群,测定菌株所产胞外蛋白酶主要是丝氨酸蛋白酶和/或金属蛋白酶。

    Abstract:

    [Objective] To uncover the diversity of extracellular protease-producing bacteria and to expand our knowledge on protease-producing bacteria in the sediments of North Yellow Sea, and to screen efficient protease production strains that might provide flora resources for mining marine protease-producing microorganisms.[Methods] Protease-producing bacteria were isolated by using casein gelatin plate from 5 sediment samples of the North Yellow Sea. The bacteria diversity was evaluated through phylogenetic analyses based on 16S rRNA genes. The protease diversity was evaluated through the inhibition tests for 39 strains with higher enzymatic activities by using 4 inhibitors:phenyl methyl sulfonyl fluoride (PMSF, serine protease inhibitor), 1,10-phenanthroline (O-P, metalloproteinase inhibitor), E-64 (cysteine protease inhibitor) and pepstatin A (aspartic protease inhibitor). Furthermore, degradation abilities for different protein substrates such as casein, gelatin and elastin were evaluated through observing hydrolytic zones.[Results] A total of 66 protease-producing strains were isolated from 5 sediment samples. These isolates were classified into 7 genera of 4 phyla including Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes, with Pseudoalteromonas (69.9%), Sulfitobacter (12.1%) and Salegentibacter (10.6%) as the dominant. The richness of the cultivable protease-producing bacteria reached 104 cells/g in all sediment samples. The inhibition tests indicated that all the tested strains produced serine protease and/or metal protease, only a few strains produced cysteine protease or aspartic protease.[Conclusion] The cultivable protease-producing bacteria in the North Yellow Sea are diverse with Pseudoalteromonas, Sulfitobacter and Salegentibacterbacteria as the dominant groups and the extracellular proteases belong to serine proteases and/or metalloproteinases.

    参考文献
    [1] Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 1998, 62(3):597-635.
    [2] Ni YQ, Gu YL, Shi XW, Zheng XJ, Han L, Zhou H, Cheng GD. Phylogenetic and physiological diversity of cold-adapted bacteria producing protease from sediments of the bottom layer of the Glacier No.1 in the Tianshan Mountains. Acta Microbiologica Sinica, 2013, 53(2):164-172. (in Chinese)倪永清, 顾燕玲, 史学伟, 郑晓吉, 韩亮, 周红, 程国栋. 天山一号冰川底部沉积层产蛋白酶耐低温菌株的筛选及其系统发育. 微生物学报, 2013, 53(2):164-172.
    [3] Gupta R, Beg Q, Lorenz P. Bacterial alkaline proteases:molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 2002, 59(1):15-32.
    [4] Chen MX, Li HY, Chen WW, Diao WC, Liu CZ, Yuan M, Li XH. Isolation, identification and characterization of 68 protease-producing bacterial strains from the Arctic. Acta Microbiologica Sinica, 2013, 53(7):702-709. (in Chinese)陈明霞, 李和阳, 陈维维, 刁伟程, 刘承忠, 袁敏, 李晓虹. 68株北极产蛋白酶菌株的筛选、鉴定以及部分酶学性质. 微生物学报, 2013, 53(7):702-709.
    [5] Olivera NL, Sequeiros C, Nievas ML. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 2007, 11(3):517-526.
    [6] Zhou MY, Chen XL, Zhao HL, Dang HY, Luan XW, Zhang XY, He HL, Zhou BC, Zhang YZ. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China Sea. Microbial Ecology, 2009, 58(3):582-590.
    [7] Zhou MY, Wang GL, Li D, Zhao DL, Qin QL, Chen XL, Chen B, Zhou BC, Zhang XY, Zhang YZ. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of king George Island, Antarctica. PLoS ONE, 2013, 8(11):e79668.
    [8] Zhang XY, Han XX, Chen XL, Dang HY, Xie BB, Qin QL, Shi M, Zhou BC, Zhang YZ. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology, 2015, 6:1021.
    [9] Du JT, Chen HT, Tian L. Heavy metals in the surface sediments of the north yellow sea and its ecological risk. Periodical of Ocean University of China, 2010, 40(S1):167-172, 178. (in Chinese)杜俊涛, 陈洪涛, 田琳. 北黄海表层沉积物中重金属含量及其污染评价. 中国海洋大学学报, 2010, 40(S1):167-172, 178.
    [10] Li SY, Miao FM, Liu GX. The disiribution and environmental background values of the heavy metals in the sediment of the North Huanghai Sea. Jouranl of Oceanography of Huanghai & Bohai Seas, 1994, 12(3):20-24. (in Chinese)李淑媛, 苗丰民, 刘国贤. 北黄海沉积物中重金属分布及环境背景值. 黄渤海海洋, 1994, 12(3):20-24.
    [11] Zhou MY. Microbial and extracellular proteases diversity and organic nitrogen degradation mechanism in sediments of the South China Sea and Fildes Peninsula, Antarctic. Doctor Dissertation of Shandong University, 2013. (in Chinese)周明扬. 中国南海和南极菲尔德斯半岛海域沉积物中微生物、蛋白酶的多样性及有机氮的降解机制. 山东大学博士学位论文, 2013.
    [12] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Biotechnology, 1992, 24(12):104-108.
    [13] Li Y, Li XY, Liu YJ, Wang ET, Ren CG, Liu W, Xu HL, Wu HL, Jiang N, Li YZ, Zhang XL, Xie ZH. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils. Systematic and Applied Microbiology, 2016, 39(3):195-202.
    [14] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10):2731-2739.
    [15] Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 1987, 4(4):406-425.
    [16] Chen XL, Zhang YZ, Gao PJ, Luan XW. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biology, 2003, 143(5):989-993.
    [17] Chen DF, Huang YY, Yuan XL, Cathles Ⅲ LM. Seep carbonates and preserved methane oxidizing archaea and sulfate reducing bacteria fossils suggest recent gas venting on the seafloor in the Northeastern South China Sea. Marine and Petroleum Geology, 2005, 22(5):613-621.
    [18] Zhao HL, Chen XL, Xie BB, Zhou MY, Gao X, Zhang XY, Zhou BC, Weiss AS, Zhang YZ. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2:cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. The Journal of Biological Chemistry, 2012, 287(47):39710-39720.
    [19] Qu J, Liu KH, Ding XW, Deng BW, Chen WQ, Guo QL, Tian XP, Zhang S, Li WJ. Fungal diversity and enzyme activities in marine sediments in the South China Sea. Acta Microbiologica Sinica, 2014, 54(5):552-562. (in Chinese)曲佳, 刘开辉, 丁小维, 邓百万, 陈文强, 郭庆兰, 田新朋, 张偲, 李文均. 南海局部海洋沉积物中真菌多样性及产酶活性. 微生物学报, 2014, 54(5):552-562.
    [20] Choi CY, Battley PF, Potter MA, Rogers KG, Ma ZJ. The importance of Yalu Jiang coastal wetland in the North Yellow Sea to Bar-tailed Godwits Limosa lapponica and Great Knots Calidris tenuirostris during northward migration. Bird Conservation International, 2015, 25(1):53-70.
    [21] Ma YX, Sun FX, Zhang CY, Bao PY, Cao SQ, Zhang MY. Effects of Pseudoalteromonas sp. BC228 on digestive enzyme activity and immune response of juvenile sea cucumber (Apostichopus japonicus). Journal of Ocean University of China, 2014, 13(6):1061-1066.
    [22] Romoli R, Papaleo MC, De Pascale D, Tutino ML, Michaud L, LoGiudice A, Fani R, Bartolucci G. GC-MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41. Metabolomics, 2014, 10(1):42-51.
    [23] Yu ZC, Zhao DL, Ran LY, Mi ZH, Wu ZY, Pang XH, Zhang XY, Su HN, Shi M, Song XY, Xie BB, Qin QL, Zhou BC, Chen XL, Zhang YZ. Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Microbial Cell Factories, 2014, 13:13.
    [24] Lü XX, Song JM, Li XG, Yuan HM, Zhan TR, Li N, Gao XL. Geochemical characteristics and early diagenesis of nitrogen in the northern Yellow Sea sediments. Acta Geologica Sinica, 2005, 79(1):114-123. (in Chinese)吕晓霞, 宋金明, 李学刚, 袁华茂, 詹天荣, 李宁, 高学鲁. 北黄海沉积物中氮的地球化学特征及其早期成岩作用. 地质学报, 2005, 79(1):114-123.
    [25] Xiong HR, Song LS, Xu Y, Tsoi MY, Dobretsov S, Qian PY. Characterization of proteolytic bacteria from the Aleutian deep-sea and their proteases. Journal of Industrial Microbiology & Biotechnology, 2007, 34(1):63-71.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

伍朝亚,李岩,曲慧敏,张振鹏,解志红,孟宪刚. 北黄海沉积物可培养产蛋白酶细菌分离鉴定[J]. 微生物学报, 2017, 57(10): 1504-1516

复制
分享
文章指标
  • 点击次数:900
  • 下载次数: 1618
  • HTML阅读次数: 792
  • 引用次数: 0
历史
  • 收稿日期:2016-11-02
  • 最后修改日期:2017-04-01
  • 在线发布日期: 2017-09-29
文章二维码