里氏木霉VPS13基因缺失对菌丝分支、生孢和纤维素酶产量的影响
作者:
基金项目:

国家自然科学基金(31370135);山东大学基本科研业务费专项资金(2015JC005);山东省农业科技成果转化资金(2014-45)


Effects of VPS13 deletion on hyphal branch, sporulation and cellulase production in Trichoderma reesei
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]丝状真菌里氏木霉是纤维素酶生产的主要工业真菌。纤维素酶分泌过程中的蛋白运输途径是控制大量纤维素酶成功输出的重要环节,因此,研究蛋白分泌途径的特定靶标基因功能将有助于鉴定纤维素酶运输分泌过程的关键调控因子。本研究借助基因敲除方法将里氏木霉液泡蛋白分选相关基因VPS13缺失,分析了该基因缺失对菌株生长、生孢尤其是纤维素酶分泌的影响。[方法]利用Double-jointPCR技术和同源重组策略构建里氏木霉VPS13基因缺失突变株,通过菌丝培养、显微观察、生孢检测、蛋白与酶活测定,系统比较VPS13基因敲除前后菌株的生长特征、菌丝形态、孢子形成、蛋白分泌以及纤维素酶活等。[结果]成功获得两株VPS13基因缺失株。与出发菌株相比,该基因突变后菌丝蔓延速率明显减慢,但菌体生物量在对数生长期后显著增多。通过显微观察,发现该基因缺失株菌丝更加密集,分支明显增多。此外,该基因缺失也导致菌株生孢延迟。纤维素底物平板分析发现VPS13基因缺失株菌落周围透明圈更加清晰,且透明圈圈径比是出发菌株的4倍,说明降解纤维素的能力有明显提高。进一步的液体发酵实验结果显示,该基因缺失导致蛋白产量及纤维素酶活力分别提高16.4%和21.9%。[结论]里氏木霉VPS13基因在菌丝生长、生孢、蛋白分泌等不同生物学过程中具有功能多样性,且该基因在菌种改良上可以作为提高纤维素酶产量的重要靶点。

    Abstract:

    [Objective] Trichoderma reesei is one of the major industrial fungi for cellulase production. A large amount of cellulases are secreted from the fungal cell through the protein secretion pathway. Therefore, knowledge of specific gene functions related to protein secretion would contribute to identification of key factors controlling cellulase production. In this study, the vacuolar protein sorting-associated gene VPS13 was deleted by gene knockout strategy in T. reesei and effects of VPS13 deletion on fungal growth and cellulase production were analyzed.[Methods] Double-joint PCR technique and homologous recombination method were used to delete VPS13 gene in T. reesei QP4 strain. Fungal cultivation, microscopic observation, sporulation detection, protein content and enzyme activity determination were applied to compare the growth characteristics, morphology, spore formation, and cellulase activity between the deletion strains and the parental strain.[Results] Two VPS13 deletion strains, ΔVPS13-1 and ΔVPS13-2, were obtained successfully. Compared with the parental strain, the mutants showed slower hyphae spreading, but their biomass increased significantly after the logarithmic growth phase. In addition, VPS13 deletion led to delay of sporulation. Cellulose plate cultivation revealed that VPS13 mutants produced clearer transparent halos around colonies than the parental strain, indicating that VPS13 deletion increased the ability to degrade cellulose. Furthermore, liquid fermentation showed that VPS13 deletion also improved protein yield and cellulase activity.[Conclusion] T. reesei VPS13 gene can be used as an important target to improve cellulase yield.

    参考文献
    [1] Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnology Advances, 2012, 30(6):1458-1480.
    [2] Peterson R, Nevalainen H. Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology, 2012, 158(Pt 1):58-68.
    [3] Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology, 2008, 26(5):553-560.
    [4] Zhang WX, Kou YB, Xu JT, Cao YL, Zhao GL, Shao J, Wang H, Wang ZX, Bao XM, Chen GJ, Liu WF. Two major facilitator superfamily sugar transporters from Trichoderma reesei and their roles in induction of cellulase biosynthesis. The Journal of Biological Chemistry, 2013, 288(46):32861-32872.
    [5] Saloheimo M, Pakula TM. The cargo and the transport system:secreted proteins and protein secretion in Trichoderma reesei (Hypocrea jecorina). Microbiology, 2012, 158(Pt 1):46-57.
    [6] Yan SM, Wu G. Secretory pathway of cellulase:a mini-review. Biotechnology for Biofuels, 2013, 6:177.
    [7] Lemmon SK, Traub LM. Sorting in the endosomal system in yeast and animal cells. Current Opinion in Cell Biology, 2000, 12(4):457-466.
    [8] Park JS, Thorsness MK, Policastro R, McGoldrick LL, Hollingsworth NM, Thorsness PE, Neiman AM. Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Molecular Biology of the Cell, 2016, 27(15):2435-2449.
    [9] Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP. Analysis of the human VPS13 gene family. Genomics, 2004, 84(3):536-549.
    [10] Bankaitis VA, Johnson LM, Emr SD. Isolation of yeast mutants defective in protein targeting to the vacuole. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(23):9075-9079.
    [11] Brickner JH, Fuller RS. SOI1 encodes a novel, conserved protein that promotes TGN-endosomal cycling of Kex2p and other membrane proteins by modulating the function of two TGN localization signals. The Journal of Cell Biology, 1997, 139(1):23-36.
    [12] Luo WJ, Chang A. Novel genes involved in endosomal traffic in yeast revealed by suppression of a targeting-defective plasma membrane ATPase mutant. The Journal of Cell Biology, 1997, 138(4):731-746.
    [13] Park JS, Neiman AM. VPS13 regulates membrane morphogenesis during sporulation in Saccharomyces cerevisiae. Journal of Cell Science, 2012, 125(Pt 12):3004-3011.
    [14] Park JS, Halegoua S, Kishida S, Neiman AM. A conserved function in phosphatidylinositol metabolism for mammalian Vps13 family proteins. PLoS One, 2015, 10(4):e0124836.
    [15] Zhong LX, Qian YC, Dai MX, Zhong YH. Improvement of uracil auxotrophic transformation system in Trichoderma reesei QM9414 and overexpression of β-glucosidase. CIESC Journal, 2016, 67(6):2510-2518. (in Chinese)钟立霞, 钱远超, 戴美学, 钟耀华. 里氏木霉QM9414尿嘧啶缺陷型转化体系改进和β-葡萄糖苷酶的过量表达. 化工学报, 2016, 67(6):2510-2518.
    [16] Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Domínguez Y, Scazzocchio C. Double-joint PCR:a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genetics and Biology, 2004, 41(11):973-981.
    [17] Penttilä M, Nevalainen H, Rättö M, Salminen E, Knowles J. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 1987, 61(2):155-164.
    [18] Le Crom S, Schackwitz W, Pennacchio L, Magnuson JK, Culley DE, Collett JR, Martin J, Druzhinina IS, Mathis H, Monot F, Seiboth B, Cherry B, Rey M, Berka R, Kubicek CP, Baker SE, Margeot A. Tracking the roots of cellulase hyperproduction by the fungus Trichoderma reesei using massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(38):16151-16156.
    [19] Pei X, Fan FY, Lin LC, Chen Y, Sun WL, Zhang SH, Tian CG. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. Biotechnology for Biofuels, 2015, 8:124.
    [20] Piekarska I, Kucharczyk R, Mickowska B, Rytka J, Rempola B. Mutants of the Saccharomyces cerevisiae VPS genes CCZ1 and YPT7 are blocked in different stages of sporulation. European Journal of Cell Biology, 2010, 89(11):780-787.
    [21] Pakula TM, Salonen K, Uusitalo J, Penttilä M. The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus Trichoderma reesei. Microbiology, 2005, 151(Pt 1):135-143.
    引证文献
引用本文

刘瑞艳,侯运华,王逸凡,钱远超,钟耀华. 里氏木霉VPS13基因缺失对菌丝分支、生孢和纤维素酶产量的影响[J]. 微生物学报, 2017, 57(10): 1555-1566

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2016-11-29
  • 最后修改日期:2017-02-19
  • 在线发布日期: 2017-09-29
文章二维码