CRISPR-Cas9系统与mazF介导的大片段删减法在酿酒酵母染色体大片段删减中的比较
作者:
基金项目:

国家自然科学基金(31470004);国家“973计划”(2011CBA00802)


Comparison of CRISRP-Cas9 system and mazF-mediated method for large deletions in Saccharomyces cerevisiae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]比较CRISPR-Cas9系统与mazF法这两种酿酒酵母染色体大片段删减方法。[方法]分别用上述两种方法删减了酿酒酵母长度为26.5 kb的染色体大片段YKL072W-YKL061W,并比较了两种方法的转化效率、敲除成功率。[结果]利用CRISPR-Cas9系统平均得到5个转化子,但正确率为100%;mazF法得到约100个转化子,正确率略低于前者,为93%。[结论]两种方法均能高效删减酿酒酵母染色体大片段,CRISPR-Cas9系统正确率较高,操作简便省时;mazF法相对稳定,对目的基因无PAM位点要求。

    Abstract:

    [Objective] The objective of this research was to compare CRISRP-Cas9 system and mazF-mediated method for large deletions in Saccharomyces cerevisiae.[Methods] We made a 26.5 kb deletion from YKL072W to YKL061W using the foresaid two methods. The two methods were analyzed from the perspective of transformation rate and accuracy of deletion.[Results] There were five colonies appeared on the plate in average using CRISRP-Cas9 system and all of these were correct. And 100 colonies were observed using the mazF-mediated method and the accuracy was 93%, a little bit lower than CRISPR-Cas9 system.[Conclusion] Both methods are good to make large deletion in Saccharomyces cerevisiae. The CRISRP-Cas9 system has a high accuracy and easy to use, the mazF-mediated method is stable and does not need the PAM sequence.

    参考文献
    [1] Runguphan W, Keasling JD. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering, 2014, 21:103-113.
    [2] Fujio T. Minimum genome factory:innovation in bioprocesses through genome science. Biotechnology and Applied Biochemistry, 2007, 46(3):145-146.
    [3] Sugiyama M, Nakazawa T, Murakami K, Sumiya T, Nakamura A, Kaneko Y, Nishizawa M, Harashima S. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2008, 80(3):545-553.
    [4] Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Research, 2002, 30(6):e23.
    [5] Hirashima K, Iwaki T, Takegawa K, Giga-Hama Y, Tohda H. A simple and effective chromosome modification method for large-scale deletion of genome sequences and identification of essential genes in fission yeast. Nucleic Acids Research, 2006, 34(2):e11.
    [6] Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3):233-239.
    [7] DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM. Genome engineering in saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7):4336-4343.
    [8] Mans R, van Rossum HM, Wijsman M, Backx A, Kuijpers NGA, van den Broek M, Daran-Lapujade P, Pronk JT, van Maris AJ, Daran JMG. Crispr/Cas9:a molecular swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Research, 2015, 15(2):fov004.
    [9] Hao HH, Wang XF, Jia HY, Yu M, Zhang XY, Tang H, Zhang LP. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Analytical Biochemistry, 2016, 509:118-123.
    [10] Zhou H, Liu B, Weeks DP, Spalding MH, Yang B. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 2014, 42(17):10903-10914.
    [11] Zhang LQ, Jia RR, Palange NJ, Satheka AC, Togo J, An Y, Humphrey M, Ban LY, Ji Y, Jin HH, Feng XC, Zheng YW. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One, 2015, 10(3):e120396.
    [12] Fu Q, Sun JH, Yan YX. The functional aspects of bacterial CRISPR-Cas systems and interactions between phages and its bacterial hosts——a review. Acta Microbiologica Sinica, 2015, 55(3):251-257. (in Chinese)傅强, 孙建和, 严亚贤. 细菌CRISPR-Cas系统功能及其与噬菌体相互作用. 微生物学报, 2015, 55(3):251-257.
    [13] Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4):347-355.
    [14] Liu QL, Liu HJ, Yang YY, Zhang XM, Bai YL, Qiao MQ, Xu HJ. Scarless gene deletion using mazF as a new counter-selection marker and an improved deletion cassette assembly method in Saccharomyces cerevisiae. The Journal of General and Applied Microbiology, 2014, 60(2):89-93.
    [15] Liu QL, Wu YZ, Yang P, Zhang XM, Bai YL, Xu HJ, Qiao MQ. MazF-mediated deletion system for large-scale genome engineering in Saccharomyces cerevisiae. Research in Microbiology, 2014, 165(10):836-840.
    [16] Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E. Epitope tagging of yeast genes using a PCR-based strategy:more tags and improved practical routines. Yeast, 1999, 15(10B):963-972.
    [17] Wang H, Kohalmi SE, Cutler AJ. An improved method for polymerase chain reaction using whole yeast cells. Analytical Biochemistry, 1996, 237(1):145-146.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴玉珍,徐海津,白艳玲,张秀明,乔明强. CRISPR-Cas9系统与mazF介导的大片段删减法在酿酒酵母染色体大片段删减中的比较[J]. 微生物学报, 2017, 57(11): 1604-1611

复制
分享
文章指标
  • 点击次数:1459
  • 下载次数: 2907
  • HTML阅读次数: 1088
  • 引用次数: 0
历史
  • 收稿日期:2016-11-15
  • 最后修改日期:2017-02-22
  • 在线发布日期: 2017-10-30
文章二维码