甲基化受体蛋白MCP2923在睾丸酮丛毛单胞菌CNB-1趋化过程中的作用
作者:
基金项目:

国家自然科学基金(31230003)


Chemotactic responses towards various organic compounds mediated by MCP2923 in Comamonas testosteroni CNB-1
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [2]
  • | | |
  • 文章评论
    摘要:

    [目的]MCP2923是睾丸酮丛毛单胞菌(Comamonas testosteroni) CNB-1的一种甲基化趋化受体蛋白,本研究旨在阐明其在CNB-1菌株趋化过程中的作用。[方法]利用游动平板法(swimming plate)检测了CNB-1及其MCP突变菌株CNB-1△20、CNB-1△MCP2923、CNB-1△20/pDSK519-MCP2923、CNB-1△20/pBBR1MCS-2-MCP2923和CNB-1△20/pBBR1MCS-2-MCP2923△LBD对35种芳香族化合物以及9种小分子有机酸的趋化性;进一步利用Agarose-in-plug法表征了MCP2923介导的对芳香族化合物的趋化表型;结合生物信息学分析,对MCP2923配体结合结构域(MCP2923LBD)进行了克隆、表达和纯化,利用等温滴定量热法(ITC)检测了MCP2923LBD与原儿茶酸等11种化合物的相互作用。[结果]CNB-1对原儿茶酸、4-羟基苯甲酸等12种芳香族化合物以及顺乌头酸等9种TCA循环中间代谢产物具有强、中强和弱3个层次的趋化表型;敲除MCP2923基因减弱了菌株对上述趋化诱导物的表型;将MCP2923基因回补到CNB-1△20菌株中可回补菌株对15种趋化效应物的表型,敲除MCP2923基因的配体结合区丧失了对15种趋化物的表型回补能力。虽然Agarose-in-plug法检测到了菌株对原儿茶酸和4-羟基苯甲酸的趋化表型,但ITC未能检测到原儿茶酸和4-羟基苯甲酸等11种化合物与MCP2923LBD直接的相互作用。[结论]MCP2923可引发CNB-1菌株对多种芳香族化合物以及小分子有机酸的趋化表型,且MCP2923LBD在这个过程中起关键作用;由于ITC的结果不能证明MCP2923LBD与芳香化合物和小分子有机酸等效应物的直接结合,推测MCP2923引发CNB-1趋化作用的机制不同于已报道的MCP2201和MCP2901的作用方式,其确切机制还有待于进一步深入研究。

    Abstract:

    [Objective] MCP2923 is a putative of Comamonas testosteroni CNB-1. The objective of this study was to experimentally characterize MCP2923 for chemotactic response.[Methods] Using swimming plate assay, we determined chemotaxis towards 35 aromatic compounds and 9 Tricarboxylic Acid Cycle intermediates. Agrose-in-plug was used to screen aromatic chemoattractants that might bind to MCP2923 directly. To study the ligand of MCP2923, Isothermal Titration Calorimetry experiment was done to 11 chemoattractants.[Results] Swimming plate assay showed that CNB-1 responded to 12 aromatic compounds and 9 Tricarboxylic Acid Cycle intermediates that were defined as strong, medium and weak chemoattractants. Knockout MCP2923 gene reduced chemotactic responses to these chemoattractants. Complemented with MCP2923 gene to CNB-1△20, chemotaxis toward 15 chemoattractants was restored. Deletion of the ligand binding domain of MCP2923, chemotaxis failed to complement. Isothermal Titration Calorimetry experiment showed no response to the tested 11 compounds, including protocatechuic acid and 4-hydroxybenzoic acid.[Conclusion] MCP2923 mediates chemotaxis towards both aromatic compounds and Tricarboxylic Acid Cycle cycle intermediates by CNB-1. The ligand binding domain of MCP2923 is necessary for triggering chemotaxis toward these chemoattractants.

    参考文献
    [1] Parkinson JS, Hazelbauer GL, Falke JJ. Signaling and sensory adaptation in Escherichia coli chemoreceptors:2015 update. Trends in Microbiology, 2015, 23(5):257-266.
    [2] Díaz E, Jiménez JI, Nogales J. Aerobic degradation of aromatic compounds. Current Opinion in Biotechnology, 2013, 24(3):431-442.
    [3] Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhoft A, Tümmler B, Fraser CM. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environmental Microbiology, 2002, 4(12):799-808.
    [4] Ma YF, Zhang Y, Zhang JY, Chen DW, Zhu YQ, Zheng HJ, Wang SY, Jiang CY, Zhao GP, Liu SJ. The complete genome of Comamonas testosteroni reveals its genetic adaptations to changing environments. Applied and Environmental Microbiology, 2009, 75(21):6812-6819.
    [5] Masai E, Kamimura N, Kasai D, Oguchi A, Ankai A, Fukui S, Takahashi M, Yashiro I, Sasaki H, Harada T, Nakamura S, Katano Y, Narita-Yamada S, Nakazawa H, Hara H, Katayama Y, Fukuda M, Yamazaki S, Fujita N. Complete genome sequence of Sphingobium sp. strain SYK-6, a degrader of lignin-derived biaryls and monoaryls. Journal of Bacteriology, 2012, 194(2):534-535.
    [6] Samanta SK, Bhushan B, Chauhan A, Jain RK. Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochemical and Biophysical Research Communications, 2000, 269(1):117-123.
    [7] Parales RE, Ditty JL, Harwood CS. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Applied and Environmental Microbiology, 2000, 66(9):4098-4104.
    [8] Lacal J, Muñoz-Martínez F, Reyes-Darías JA, Duque E, Matilla M, Segura A, Ortega-Calvo JJ, Jímenez-Sánchez C, Krell T, Ramos JL. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environmental Microbiology, 2011, 13(7):1733-1744.
    [9] Grimm AC, Harwood CS. NahY, A catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. Journal of Bacteriology, 1999, 181(10):3310-3316.
    [10] Vangnai AS, Takeuchi K, Oku S, Kataoka N, Nitisakulkan T, Tajima T, Kato J. Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 2013, 79(23):7241-7248.
    [11] Ni B, Huang Z, Wu YF, Fan Z, Jiang CY, Liu SJ. A novel chemoreceptor MCP2983 from Comamonas testosteroni specifically binds to cis-aconitate and triggers chemotaxis towards diverse organic compounds. Applied Microbiology and Biotechnology, 2015, 99(6):2773-2781.
    [12] Ni B, Huang Z, Fan Z, Jiang CY, Liu SJ. Comamonas testosteroni uses a chemoreceptor for tricarboxylic acid cycle intermediates to trigger chemotactic responses towards aromatic compounds. Molecular Microbiology, 2013, 90(4):813-823.
    [13] Huang Z, Ni B, Jiang CY, Wu YF, He YZ, Parales RE, Liu SJ. Direct sensing and signal transduction during bacterial chemotaxis toward aromatic compounds in Comamonas testosteroni. Molecular Microbiology, 2016, 101(2):224-237.
    [14] Wu JF, Sun CW, Jiang CY, Liu ZP, Liu SJ. A novel 2-aminophenol 1,6-dioxygenase involved in the degradation of p-chloronitrobenzene by Comamonas strain CNB-1:purification, properties, genetic cloning and expression in Escherichia coli. Archives of Microbiology, 2005, 183(1):1-8.
    [15] Keen NT, Tamaki S, Kobayashi D, Trollinger D. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene, 1988, 70(1):191-197.
    [16] Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene, 1995, 166(1):175-176.
    [17] Lacal J, García-Fontana C, Muñoz-Martínez F, Ramos JL, Krell T. Sensing of environmental signals:classification of chemoreceptors according to the size of their ligand binding regions. Environmental Microbiology, 2010, 12(11):2873-2884.
    [18] Luu RA, Kootstra JD, Nesteryuk V, Brunton CN, Parales JV, Ditty JL, Parales RE. Integration of chemotaxis, transport and catabolism in Pseudomonas putida and identification of the aromatic acid chemoreceptor PcaY. Molecular Microbiology, 2015, 96(1):134-147.
    [19] López-Farfán D, Reyes-Darias JA, Krell T. The expression of many chemoreceptor genes depends on the cognate chemoeffector as well as on the growth medium and phase. Current Genetics, doi:10.1007/s00294-016-0646-7.
    [20] Iwaki H, Muraki T, Ishihara S, Hasegawa Y, Rankin KN, Sulea T, Boyd J, Lau PCK. Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. Journal of Bacteriology, 2007, 189(9):3502-3514.
    [21] García V, Reyes-Darias JA, Martín-Mora D, Morel B, Matilla MA, Krell T. Identification of a chemoreceptor for C2 and C3 carboxylic acids. Applied and Environmental Microbiology, 2015, 81(16):5449-5457.
    [22] Pham HT, Parkinson JS. Phenol sensing by Escherichia coli chemoreceptors:a nonclassical mechanism. Journal of Bacteriology, 2011, 193(23):6597-6604.
    [23] Paul D, Singh R, Jain RK. Chemotaxis of Ralstonia sp. SJ98 towards p-nitrophenol in soil. Environmental Microbiology, 2006, 8(10):1797-1804.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何蕴喆,黄舟,姜成英,刘双江. 甲基化受体蛋白MCP2923在睾丸酮丛毛单胞菌CNB-1趋化过程中的作用[J]. 微生物学报, 2017, 57(11): 1676-1687

复制
分享
文章指标
  • 点击次数:995
  • 下载次数: 1944
  • HTML阅读次数: 1022
  • 引用次数: 0
历史
  • 收稿日期:2017-02-07
  • 最后修改日期:2017-04-04
  • 在线发布日期: 2017-10-30
文章二维码