蛋白质的甲基化研究进展
作者:
基金项目:

国家“973计划”(2015CB554203)


Progress in protein methylation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    蛋白质翻译后修饰是调控蛋白质生物学功能的重要步骤之一。甲基化修饰作为蛋白质翻译后修饰的一种重要形式,参与了真核生物和原核生物的多种细胞进程。本文综述了目前蛋白质甲基化的研究进展,包括真核生物、原核生物,组蛋白和非组蛋白,以及多种氨基酸位点的甲基化修饰。这些发现丰富了人们对蛋白质甲基化修饰的认识,对深入了解蛋白质翻译后修饰的功能具有重要意义。

    Abstract:

    Protein post-translational modifications, as an important step in protein maturation, participate in the regulation of diverse protein biological functions. Methylation is one of the modifications and plays multiple roles in cellular processes, ranging from eukaryotes to prokaryotes. Protein methylation occurs on various amino acid residues, such as lysine, arginine, glutamine and others. This review summarized the progress in protein methylation, including both eukaryote and prokaryote, as well as histone and non-histone proteins.

    参考文献
    [1] Ambler RP, Rees MW. ε-N-Methyl-lysine in bacterial flagellar protein. Nature, 1959, 184(4679):56-57.
    [2] Biggar KK, Li SSC. Non-histone protein methylation as a regulator of cellular signalling and function. Nature Reviews Molecular Cell Biology, 2015, 16(1):5-17.
    [3] Greer EL, Shi Y. Histone methylation:a dynamic mark in health, disease and inheritance. Nature Reviews Genetics, 2012, 13(5):343-357.
    [4] Kaniskan HÜ, Szewczyk MM, Yu ZT, Eram MS, Yang XB, Schmidt K, Luo X, Dai M, He F, Zang I, Lin Y, Kennedy S, Li FL, Dobrovetsky E, Dong AP, Smil D, Min S J, Landon M, Lin-Jones J, Huang XP, Roth BL, Schapira M, Atadja P, Barsyte-Lovejoy D, Arrowsmith CH, Brown PJ, Zhao KH, Jin J, Vedadi M. A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3(PRMT3). Angewandte Chemie:International Edition, 2015, 54(17):5166-5170.
    [5] Murray K. The occurrence of iε-N-methyl lysine in histones. Biochemistry, 1964, 3(1):10-15.
    [6] Kim S, Paik WK. Studies on the origin of epsilon-N-methyl-L-lysine in protein. Journal of Biological Chemistry, 1965, 240(12):4629-4634.
    [7] Shi YJ, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell, 2004, 119(7):941-953.
    [8] Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature, 2000, 406(6796):593-599.
    [9] Alam H, Gu BN, Lee MG. Histone methylation modifiers in cellular signaling pathways. Cellular and Molecular Life Sciences, 2015, 72(23):4577-4592.
    [10] Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle, 2014, 13(5):726-738.
    [11] Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2009, 1789(1):45-57.
    [12] Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 2005, 6(11):838-849.
    [13] Lee DY, Teyssier C, Strahl BD, Stallcup MR. Role of protein methylation in regulation of transcription. Endocrine Reviews,2005, 26(2):147-170.
    [14] Lanouette S, Mongeon V, Figeys D, Couture JF. The functional diversity of protein lysine methylation. Molecular Systems Biology, 2014, 10(4):724.
    [15] Kaniskan HÜ, Konze KD, Jin J. Selective inhibitors of protein methyltransferases. Journal of Medicinal Chemistry, 2015, 58(4):1596-1629.
    [16] Zurita-Lopez CI, Sandberg T, Kelly R, Clarke SG. Human protein arginine methyltransferase 7(PRMT7) is a type Ⅲ enzyme forming ω-NG-monomethylated arginine residues. Journal of Biological Chemistry, 2012, 287(11):7859-7870.
    [17] Bedford MT, Richard S. Arginine methylation:an emerging regulatorof protein function. Molecular Cell, 2005, 18(3):263-272.
    [18] Branscombe TL, Frankel A, Lee JH, Cook JR, Yang ZH, Pestka S, Clarke S. PRMT5(Janus kinase-binding protein 1) catalyzes the formation of symmetric dimethylarginine residues in proteins. Journal of Biological Chemistry, 2001, 276(35):32971-32976.
    [19] Bedford MT, Clarke SG. Protein arginine methylation in mammals:who, what, and why. Molecular Cell, 2009, 33(1):1-13.
    [20] Tripsianes K, Madl T, Machyna M, Fessas D, Englbrecht C, Fischer U, Neugebauer KM, Sattler M. Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nature Structural & Molecular Biology, 2011, 18(12):1414-1420.
    [21] Yang YZ, Bedford MT. Protein arginine methyltransferases and cancer. Nature Reviews Cancer, 2013, 13(1):37-50.
    [22] Frankel A, Yadav N, Lee J, Branscombe TL, Clarke S, Bedford MT. The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. Journal of Biological Chemistry, 2002, 277(5):3537-3543.
    [23] 灐楡湨楬潩湣?椠湓??楚捡牫潡扲楹潡汮漠杒祐???づ???????????????????执物?孩??崠?健潴牨瑹敬牡?卩???坣慥摬桬慵浬獡??????牴浩楯瑮慳朠敡??倠??却楨杯湤慳氠?灦爠潡据敡獬獹楳湩杳?椠湂?捯潣浨灩汭敩硣?挠桥整洠潂瑩慯硰楨獹?灩慣瑡栠睁慣祴獡??乂慂瑁甩爭敐?副整癥楩敮睳猠??楤挠牐潲扯楴潥汯潭杩祣??㈠??????????ㄨ????????戭爱?嬰??崼?偲愾牛欲椴湝猠潓湰??卮???愬稠敃汨扥慮甠教爬??????愠汋欬攠?????匠楄杍測愠汚楨湡杮?愠湔搬?獐敥湮獧漠牊祍?愠摚慨灡瑯愠瑙楍漮渠?楤湥??獩捦桩散牡楴捩桯楮愠?据潤氠楶?捬桩敤浡潴物敯据攠灯瑦漠牥獵??ひ???畩灣搠慡瑳数??呴牡整湥搠獡?楤渠??極捴牡潭扡楴潥氠潭来祴???ち????㈠??????????????扯牵?孮??崠??愠潐?塯????慥椠?????慲潣?堬?′丰椰攸?匠???栩愺渱朰‰報???田??夼??匾桛攲渵杝?兎???坓愬渠杙??匠??丬椠湏杰?婥????楮?奕堬???畯潳?堠???娠桄慹潮??偩??婰敲湯杴?剩???楥杴桨?捬潡癴敩牯慮朠敩?瀠牣潨瑲敯潭浡整?慮渠慢汩祯獬楯獧?爮攠癃敥慬汬獵?瑡桲攠?普楤爠獍瑯?楥湣獵楬条桲琠?潩晦?瀠牓潣瑩敥楮湣?浳漬搠椲昰椰挹愬琠椶漶渨″猩示猴琰攷洭猴′椲渮?瑢桲放?瀲愶瑝栠潂杬敡湣楫捷?獬灬椠牅漬挠桃敥瑭敡??敓瀮琠潁獲灧楩牮慩?楥渠瑭敥牴牨潹杬慡湴獩???敯汦氠?剎敁猭敢慩牮捤桩??㈠ば?は???の?㈠????????び??扥牬?嬠??嵮??獩桯杮栠楡????偩楦湦湥敲?????慴慩歯敮?????婥畣敵牬湡敲爠?剥????牵慣湴歩?????慤洠敄牥潶湥??????整琬栠礲氰愱琲椬漠渷?愨渳搩?椱渶″瘭椱瘷漵?攼硢灲爾敛猲猷楝漠湃?潲晲?瑓桍攬?獒畯牷景慲捴敨?敁硐瀬漠獃敨摡??敃瀬琠潔獨灡楮牧慵?椠湎瑂敌爮爠潐杯慳湴猭?潲畡瑮敳牬?浴敩浯扮牡慬渠散?灮牴潲瑯敬椠湯?传浴灲??????楰捴物潯扮椠潦污潣杴祯??呼ね????????偯瑮??????㈠??????戮爠?孨??嵆?剂敓渠????卮慡湬本?夲??吵愬渠′夸??′吳愩漺???‰中椴??????楲甾?匲吸???慨湵?填??娠桓愬漠?坵???畨????圠畗?坬???夠慊潒?夠????挠敂琬礠汊慵瑳楴潩湮?潎昬?汉祶獡楮湯敶??こ??楍湣桋楩扮楮瑥獹?瑋栬攠??乭???椠湐搬椠湐杲?慶扥楳氠楃琬礠?潡晭?偬桩潮倠?瑊漬?牂敡杲畬汥慶琠敎?匬愠汒浥潩湮敢汥汲慧?癄椮爠畒汥敧湵捬敡??偯?漠卯?倠慰琵栳漠条散湴獩???べㄠ?????????敹?どの?????hylation. Nature, 2004, 432(7015):353-360.
    [29] Huang J, Berger SL. The emerging field of dynamic lysine methylation of non-histone proteins. Current Opinion in Genetics & Development, 2008, 18(2):152-158.
    [30] Cain JA, Solis N, Cordwell SJ. Beyond gene expression:the impact of protein post-translational modifications in bacteria. Journal of Proteomics, 2014, 97:265-286.
    [31] Abeykoon AH, Wang GH, Chao CC, Chock PB, Gucek M, Ching WM, Yang DCH. Multimethylation of Rickettsia OmpB catalyzed by lysine methyltransferases. Journal of Biological Chemistry, 2014, 289(11):7691-7701.
    [32] Abeykoon AH, Chao CC, Wang GH, Gucek M, Yang DCH, Ching WM. Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia. Journal of Bacteriology, 2012, 194(23):6410-6418.
    [33] Brown MT, Delalez NJ, Armitage JP. Protein dynamics and mechanisms controlling the rotational behaviour of the bacterial flagellar motor. Current O
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘舒婷,苏杨,姚玉峰. 蛋白质的甲基化研究进展[J]. 微生物学报, 2017, 57(11): 1698-1707

复制
分享
文章指标
  • 点击次数:1259
  • 下载次数: 8643
  • HTML阅读次数: 2211
  • 引用次数: 0
历史
  • 收稿日期:2017-04-14
  • 最后修改日期:2017-07-17
  • 在线发布日期: 2017-10-30
文章二维码