腺苷酸核糖基化因子BbarfA介导白僵菌孢子萌发和毒力
作者:
基金项目:

国家自然科学基金(30871668)


An ADP-ribosylation factor, BbarfA, is involved in conidial germination and virulence in Beauveria bassiana
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的] 探究腺苷酸糖基化因子ARF在球孢白僵菌(Beauveria bassiana)中存在种类及生物学功能。[方法] 利用BLASTp搜索球孢白僵菌非冗余蛋白数据库,鉴定ARF并进行聚类分析,结合表达分析、反义抑制、超量表达野生型基因和GTP解离位点与结合位点突变的基因,解析其中1个ARF与白僵菌发育分化、逆境胁迫反应和毒力的关系。[结果] 球孢白僵菌中存在至少6个ARF或类似蛋白,分别聚类于酵母、人类ARF及其类似蛋白的不同类群。其中BBA_01574与人类的ARF3、ARF4和ARF5聚为一类,命名为BbarfA。BbarfA在成熟的分生孢子和球形膨大时期表达明显高于芽管伸长期。反义抑制BbarfA加速了孢子萌发,提高了菌株毒力,而超量表达BbarfA和点突变GTP解离区域的BbarfA则延迟了孢子萌发速度,降低了菌株毒力。尽管BbarfA转录受高盐、髙渗、氧化和高温胁迫的诱导,但遗传修饰的转化子与野生菌株对上述胁迫反应的敏感性无明显差异。[结论] BbarfA介导分生孢子萌发和毒力。

    Abstract:

    [Objective] To understand the number of ADP-ribosylation factor (ARFs) and their roles in Beauveria bassiana.[Methods] ARFs were identified by BLASTp searching against the database of B. bassiana proteins and analyzed using molecular phylogenetics. Role of an ARF in fungal growth, stress responses and virulence was characterized by analysis of the gene transcription pattern, and investigation of the genetically modified B. bassiana strains.[Results] At least six ARFs and ARF-like proteins (ARFLs) were identified in B. bassiana, which were distributed in different groups of yeast Saccharomyces cerevisiae and human Homo sapiens ARFs and ARFLs. One of ARFs, BBA_01574, designated BbarfA, was clustered in the group of human ARF3, ARF4 and ARF5. Transcription levels of BbarfA were obviously higher in the mature conidia or during the isotropic growth (swelling) phase of conidia than those during germ tube elongation phase. Antisense inhibition of BbarfA accelerated conidial germination and resulted in an increase in fungal virulence, whereas overexpression of BbarfA and the gene with site-mutation in GTP-binding sequences (BbarfAQ71I) caused the opposite phenotypes. Although expression of the gene was induced by high salt, osmotic, oxidative and high temperature stresses, no obvious difference was noted in sensitivities to these adverse stresses in all the genetically modified transformants, which included strains suppressing (by antisense inhibition) or overexpressing BbarfA, overexpressing the genes with site-mutation in GTP-dissociating (BbarfAD26G) or GTP-binding (BbarfAQ71I) sequences, and the wild type strains.[Conclusion] ADP-ribosylation factor, BbarfA, was involved in conidial germination and virulence in B. bassiana.

    参考文献
    [1] Jian XY, Cavenagh M, Gruschus JM, Randazzo PA, Kahn RA. Modifications to the C-terminus of Arf1 alter cell functions and protein interactions. Traffic, 2010, 11(6):732-742.
    [2] Neuwald AF. Bayesian classification of residues associated with protein functional divergence:Arf and Arf-like GTPases. Biology Direct, 2010, 5(1):66.
    [3] Logsdon JM Jr, Kahn RA. The Arf family tree//Kahn RA. Arf Family GTPases. Series Volume 1. Netherlands:Springer, 2003:1-21.
    [4] D'Souza-Schorey C, Chavrier P. ARF proteins:roles in membrane traffic and beyond. Nature Reviews Molecular Cell Biology, 2006, 7(5):347-358.
    [5] Volpicelli-Daley LA, Li YW, Zhang CJ, Kahn RA. Isoform-selective effects of the depletion of ADP-ribosylation factors 1-5 on membrane traffic. Molecular Biology of the Cell, 2005, 16(10):4495-4508.
    [6] Donaldson JG. Multiple roles for Arf6:sorting, structuring, and signaling at the plasma membrane. Journal of Biological Chemistry, 2003, 278(43):41573-41576.
    [7] Burd CG, Strochlic TI, Gangi Setty SR. Arf-like GTPases:not so Arf-like after all. Trends in Cell Biology, 2004, 14(12):687-694.
    [8] Bhattacharyya RP, Reményi A, Yeh BJ, Lim WA. Domains, motifs, and scaffolds:the role of modular interactions in the evolution and wiring of cell signaling circuits. Annual Review of Biochemistry, 2006, 75:655-680.
    [9] Yang ZB. Small GTPases:versatile signaling switches in plants. The Plant Cell, 2002, 14(S1):S375-S388.
    [10] Lee SC, Shaw BD. Localization and function of ADP ribosylation factor A in Aspergillus nidulans. FEMS Microbiology Letters, 2008, 283(2):216-222.
    [11] Jin K, Zhang YJ, Luo ZB, Xiao YH, Fan YH, Wu D, Pei Y. An improved method for Beauveria bassiana transformation using phosphinothricin acetlytransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnology Letters, 2008, 30(8):1379-1383.
    [12] Xiao YH, Yin MH, Hou L, Pei Y. Direct amplification of intron-containing hairpin RNA construct from genomic DNA. BioTechniques, 2006, 41(5):548-552.
    [13] Saitoh O, Oshima T, Agata K, Watanabe K, Nakata H. Molecular cloning of a novel ADP-ribosylation factor (ARF) expressed in planarians. Biochimica et Biophysica Acta (BBA)——Gene Structure and Expression, 1996, 1309(3):205-210.
    [14] Lundmark R, Doherty GJ, Vallis Y, Peter BJ, Mcmahon HT. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochemical Journal, 2008, 414(2):189-194.
    [15] Xie XQ, Guan Y, Ying SH, Feng MG. Differentiated functions of Ras1 and Ras2 proteins in regulating the germination, growth, conidiation, multi-stress tolerance and virulence of Beauveria bassiana. Environmental Microbiology, 2013, 15(2):447-462.
    [16] Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T. GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. The EMBO Journal, 1999, 18(18):4935-4948.
    [17] Cosson P, Letourneur F. Coatomer (COPI)-coated vesicles:role in intracellular transport and protein sorting. Current Opinion in Cell Biology, 1997, 9(4):484-487.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘海,赵婧,李雪兵,刘鹏飞,罗廷英,张永军. 腺苷酸核糖基化因子BbarfA介导白僵菌孢子萌发和毒力[J]. 微生物学报, 2017, 57(12): 1827-1838

复制
分享
文章指标
  • 点击次数:869
  • 下载次数: 1410
  • HTML阅读次数: 677
  • 引用次数: 0
历史
  • 收稿日期:2016-12-23
  • 最后修改日期:2017-03-06
  • 在线发布日期: 2017-11-25
文章二维码