枯草芽孢杆菌L-脯氨酸合成途径中glnAproBproA基因功能探究
作者:
基金项目:

国家自然科学基金(31401674);“十三五”国家重点研发计划(2016YFD0401404);江南大学自主重点项目(JUSRP51503)


Function of glnA, proB and proA genes in L-proline anabolic pathway of Bacillus subtilis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]从基因水平探究枯草芽孢杆菌渗透压调节因子L-脯氨酸合成途径中glnAproBproA基因的功能,通过分子改造实现对代谢途径的人工扰动。[方法]从枯草芽孢杆菌WB600出发,通过向胞内引入一系列基因敲除或过表达,分别构建了proBproA基因过表达的重组菌WB601和WB602、glnA基因缺失的重组菌WB603以及在此基础之上过表达proB基因的重组菌WB604。借助菌株胞外和胞内游离脯氨酸积累的表型分析影响途径的关键节点。[结果]在非胁迫条件下,重组菌WB601和WB602胞外脯氨酸含量分别是原始菌的2.21倍和2.82倍,单位细胞胞外脯氨酸得率分别是原始菌的4.09倍和9.80倍,胞内游离脯氨酸含量分别是原始菌的1.91倍和3.34倍;重组菌WB603胞外脯氨酸含量上升至1221.43 mg/L,是原始菌的6.28倍,单位细胞胞外和胞内游离脯氨酸得率分别为原始菌的9.13倍和3.66倍;而重组菌WB604胞外脯氨酸含量最高达1391.65 mg/L,相比菌株WB603,其胞外脯氨酸含量及单位细胞得率分别提高了13.94%和14.10%,且胞内游离脯氨酸含量提高了32.60%。在5% NaCl胁迫条件下,重组菌WB601和WB602的胞外脯氨酸含量分别是原始菌的1.94倍和1.54倍,单位细胞胞外脯氨酸得率分别是原始菌的2.15倍和2.19倍;重组菌WB603胞外脯氨酸含量及其单位细胞得率分别是原始菌的4.16倍和7.29倍;相同条件下,相比于重组菌WB603,重组菌WB604的胞外脯氨酸含量及其单位细胞得率分别提高了32.61%和5.54%。此外,实验组菌株的胞内游离脯氨酸含量均高于非胁迫时,并达到相对平衡状态。[结论]proBproA基因的过表达均能显著提升细胞合成脯氨酸的能力,并且能增强细胞的耐盐性;glnA基因的缺失能增强脯氨酸合成途径,提高脯氨酸的积累;两种效应的正向叠加可进一步提升细胞脯氨酸合成能力。

    Abstract:

    [Objective] We studied the function of glnA, proB and proA genes in the pathway of proline biosynthesis in Bacillus subtilis.[Methods] B. subtilis WB600 was used as the original strain. After a series of intracellular gene deletion and overexpression, we constructed recombinant strain WB601 with proB gene overexpression and WB602 with proA gene overexpression; WB603 with glnA gene deletion. Then, WB604 with proB gene overexpression was constructed. The anabolic key nodes were analyzed by phenotypes of extracellular and intracellular free proline accumulation.[Results] Under non-stress conditions, the extracellular proline content of the recombinant strains WB601 and WB602 were 2.21 times and 2.82 times of that of the original strain, the unit cell extracellular proline yield were 4.09 times and 9.80 times of that of the original strain, and the intracellular free proline content were 1.91 times and 3.34 times of that of the original strain, respectively. The extracellular proline content of the recombinant strain WB603 increased to 1221.43 mg/L, 6.28 times of that of the original strain, and the unit cell extracellular and intracellular free proline yield were 9.13 times and 3.66 times of that of the original strain, respectively. The extracellular proline content of the recombinant strain WB604 up to 1391.65 mg/L, compared with strain WB603, the extracellular proline content and unit cell yield were increased by 13.94% and 14.10%, respectively, and the intracellular free proline content increased by 32.60%. Under 5% NaCl stress, the extracellular proline content of recombinant strains WB601 and WB602 were 1.94 times and 1.54 times of the original strain, and the unit cell yield were 2.15 times and 2.19 times of the original strain, respectively; the extracellular proline content and unit cell yield of recombinant strain WB603 were 4.16 times and 7.29 times of the original strain, respectively; under the same conditions, compared with the recombinant strain WB603, the extracellular proline content and unit cell yield of the recombinant strain WB604 were increased by 32.61% and 5.54%, respectively. In addition, the intracellular free proline content of the experimental groups were higher than that of non stress conditions, and reached a relative equilibrium state.[Conclusion] Overexpression of proB and proA gene can significantly enhance the ability of cells to synthesize proline and enhance the salt tolerance of cells; deletion of glnA could enhance proline de novo synthesis pathway and increase the accumulation of proline; moreover, the positive accumulation of the two effects could further improve the ability of proline synthesis.

    参考文献
    [1] Schallmey M, Singh A, Ward OP. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology, 2004, 50(1):1-17.
    [2] Whatmore AM, Chudek JA, Reed RH. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. Journal of General Microbiology, 1990, 136(12):2527-2535.
    [3] Kempf B, Bremer E. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Archives of Microbiology, 1998, 170(5):319-330.
    [4] von Blohn C, Kempf B, Kappes RM, Bremer E. Osmostress response in Bacillus subtilis:Characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor sigma B. Molecular Microbiology, 1997, 25(1):175-187.
    [5] Brill J, Hoffmann T, Bleisteiner M, Bremer E. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. Journal of Bacteriology, 2011, 193(19):5335-5346.
    [6] Belitsky BR, Brill J, Bremer E, Sonenshein AL. Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. Journal of Bacteriology, 2001, 183(14):4389-4392.
    [7] Brill J, Hoffmann T, Putzer H, Bremer E. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology, 2011, 157:977-987.
    [8] Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments:a review. Plant Signaling & Behavior, 2012, 7(11):1456-1466.
    [9] Marulanda A, Barea JM, Azcón R. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments:mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 2009, 28(2):115-124.
    [10] Vardharajula S, Ali SZ, Grover M, Reddy G, Bandi V. Drought-tolerant plant growth promoting Bacillus spp.:effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 2011, 6(1):1-14.
    [11] Kunst F, Rapoport G. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. Journal of Bacteriology, 1995, 177(9):2403-2407.
    [12] Chen MQ, Cao JW, Zheng CY, Liu Q. Directed evolution of an artificial bifunctional enzyme, γ-glutamyl kinase/γ-glutamyl phosphate reductase, for improved osmotic tolerance of Escherichia coli transformants. FEMS Microbiology Letters, 2006, 263(1):41-47.
    [13] Chen MQ, Wei HB, Cao JW, Liu RJ, Wang YL, Zheng CY. Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in Transgenic Arabidopsis. BMB Reports, 2007, 40(3):396-403.
    [14] Liu RJ, Chen T, Cao JW. Construction of fused osmoregulation proBA gene from a salt-tolerant mutant of Bacillus subtilis and its influence on the osmotolerance of Escherichia coli. Acta Microbiologica Sinica, 2005, 45(1):23-26. (in Chinese) 刘瑞杰, 陈婷, 曹军卫. 渗透压调节基因proBA的融合表达对大肠杆菌耐高渗胁迫能力的影响. 微生物学报, 2005, 45(1):23-26.
    [15] Park JH, Lee SY. Towards systems metabolic engineering of microorganisms for amino acid production. Current Opinion in Biotechnology, 2008, 19(5):454-460.
    [16] Peng QA, Zhang XF, Wu SF, Wang WP. Construction of Bacillus subtilis tkt-mutant by homologous recombination. Biotechnology, 2006, 16(6):23-26. (in Chinese) 彭其安, 张西峰, 吴思方, 王伟平. 同源重组法构建枯草芽孢 杆菌转酮 酶缺失 突变菌 株. 生物 技术, 2006, 16(6):23-26.
    [17] 刘延峰. 代谢工程改造枯草芽孢杆菌高效合成N-乙酰氨基葡萄糖. 江南大学博士学位论文, 2015.
    [18] Zhi MX, Li XJ. Improvement on the method for measuring proline content. Plant Physiology Communications, 2005, 41(3):355-357. (in Chinese) 职明星, 李秀菊. 脯氨酸测定方法的改进. 植物生理学通讯, 2005, 41(3):355-357.
    [19] Schreier HJ, Sonenshein AL. Altered regulation of the glnA gene in glutamine synthetase mutants of Bacillus subtilis. Journal of Bacteriology, 1986, 167(1):35-43.
    [20] Varma A, Palsson BO. Metabolic flux balancing:basic concepts, scientific and practical use. Nature Biotechnology, 1994, 12(10):994-998.
    [21] Pérez-Arellano I, Carmona-Álvarez F, Gallego J, Cervera J. Molecular mechanisms modulating glutamate kinase activity. Identification of the proline feedback inhibitor binding site. Journal of Molecular Biology, 2010, 404(5):890-901.
    [22] Seo JH, Bailey JE. Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coli. Biotechnology and Bioengineering, 1985, 27(12):1668-1674.
    [23] Moses S, Sinner T, Zaprasis A, Stöveken N, Hoffmann T, Belitsky BR, Sonenshein AL, Bremer E. Proline utilization by Bacillus subtilis:uptake and catabolism. Journal of Bacteriology, 2012, 194(4):745-758.
    [24] Zaprasis A, Bleisteiner M, Kerres A, Hoffmann T, Bremer E. Uptake of amino acids and their metabolic conversion into the compatible solute proline confers osmoprotection to Bacillus subtilis. Applied and Environmental Microbiology, 2015, 81(1):250-259.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴志勇,李由然,顾正华,丁重阳,张梁,石贵阳. 枯草芽孢杆菌L-脯氨酸合成途径中glnAproBproA基因功能探究[J]. 微生物学报, 2018, 58(1): 39-50

复制
分享
文章指标
  • 点击次数:1433
  • 下载次数: 1748
  • HTML阅读次数: 754
  • 引用次数: 0
历史
  • 收稿日期:2017-01-05
  • 最后修改日期:2017-04-04
  • 在线发布日期: 2018-01-02
文章二维码