中国白酒发酵过程中的核心微生物群及其与环境因子的关系
作者:
基金项目:

国家自然科学基金(31530055);国家重点研发计划(2016YFD0400503)


Core microbiota in Chinese liquor fermentation and associations with environmental factors
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]揭示白酒酿造过程复杂微生物群落中的核心微生物群(core microbiota),定量分析核心微生物群的环境调控因素。[方法]通过高通量测序揭示发酵过程中的微生物群落结构,使用气相色谱-质谱联仪(GC-MS)测定发酵过程中的挥发性化合物。采用微生物群落与挥发性化合物轮廓关联分析获得风味代谢的功能微生物群(functional microbiota);通过微生物共现性网络分析,获得群落组成中的共现微生物群(co-occurring microbiota),两类微生物群的集合即为白酒酿造的核心微生物群。利用冗余分析(redundancy analysis)和蒙特卡洛置换检验(Monte Carlo permutation test)研究每个环境因素对该核心微生物群的影响。[结果]白酒发酵过程中的核心微生物群主要包含10个属,分别是Lactobacillus、Saccharomyces、Candida、Rhizopus、Saccharomycopsis、Pichia、Dipodascus、Bacillus、ThermoascusLactococcus。冗余分析和蒙特卡洛置换检验表明,化学因素(还原糖和乙醇)对核心微生物群的变化比物理因素(水分、温度和酸度)具有更加重要的影响作用,此外物理-化学因素的相互作用对核心微生物群的驱动也有很大的影响。[结论]本研究揭示了白酒发酵过程中的微生物群落组成和代谢物轮廓的变化规律及其二者之间的相关关系,确立了发酵过程中的核心微生物群并量化了影响核心微生物群变化的环境因素,为实现合成微生物组生产白酒及其定向调控奠定理论基础。

    Abstract:

    [Objective] The aim of this study is to reveal core microbiota during Chinese liquors fermentation, and to quantify the impact of environmental factors on the variations of the core microbiota.[Methods] The microbial community composition was characterized by high-throughput sequencing. The volatile compounds were analyzed by gas chromatography-mass spectrometry. Core microbiota was defined according to the microbial function and microbial correlation patterns using the microbe-metabolite correlation approach and co-occurrence network analysis. We used redundancy analysis and Monte Carlo permutation test to analyze the influence of environmental factors on the core microbiota.[Results] The core microbiota during the liquor fermentation consisted of Lactobacillus, Saccharomyces, Candida, Rhizopus, Saccharomycopsis, Pichia, Dipodascus, Bacillus, Thermoascus and Lactococcus. The variations of the core microbiota were mainly affected by the chemical factors such as reducing sugar and ethanol. In addition, the interaction between physical and chemical factors was also substantial for the core microbiota variations.[Conclusion] This study disentangled the relationship between microbial communities and metabolites, found out the core microbiota in the liquor fermentation process, and quantified the influence of environmental factors on the variations of core microbiota, hence providing a theoretical perspective for regulating the production of liquors by using synthetic microbial communities or by controlling environmental factors.

    参考文献
    [1] Giraffa G. Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews, 2004, 28(2):251-260.
    [2] Smid EJ, Lacroix C. Microbe-microbe interactions in mixed culture food fermentations. Current Opinion in Biotechnology, 2013, 24(2):148-154.
    [3] Großkopf T, Soyer OS. Synthetic microbial communities. Current Opinion in Microbiology, 2014, 18:72-77.
    [4] Wolfe BE, Dutton RJ. Fermented foods as experimentally tractable microbial ecosystems. Cell, 2015, 161(1):49-55.
    [5] De Roy K, Marzorati M, van den Abbeele P, van de Wiele T, Boon N. Synthetic microbial ecosystems:an exciting tool to understand and apply microbial communities. Environmental Microbiology, 2014, 16(6):1472-1481.
    [6] Wolfe BE, Button JE, Santarelli M, Dutton RJ. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell, 2014, 158(2):422-433.
    [7] de Pasquale I, di Cagno R, Buchin S, de Angelis M, Gobbetti M. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese. Applied and Environmental Microbiology, 2014, 80(19):6243-6255.
    [8] Wang ZM, Lu ZM, Shi JS, Xu ZH. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Scientific Reports, 2016, 6:26818.
    [9] Hu XL, Du H, Ren C, Xu Y. Illuminating anaerobic microbial community and cooccurrence patterns across a quality gradient in chinese liquor fermentation pit muds. Applied and Environmental Microbiology, 2016, 82(8):2506-2515.
    [10] Rui JP, Li JB, Zhang SH, Yan XF, Wang YP, Li XZ. The core populations and co-occurrence patterns of prokaryotic communities in household biogas digesters. Biotechnology for Biofuels, 2015, 8:158.
    [11] Chaillou S, Chaulot-Talmon A, Caekebeke H, Cardinal M, Christieans S, Denis C, Desmonts MH, Dousset X, Feurer C, Hamon E, Joffraud JJ, La Carbona S, Leroi F, Leroy S, Lorre S, Macé S, Pilet MF, Prévost H, Rivollier M, Roux D, Talon R, Zagorec M, Champomier-Vergès MC. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The ISME Journal, 2015, 9(5):1105-1118.
    [12] Cardinale M, Grube M, Erlacher A, Quehenberger J, Berg G. Bacterial networks and co-occurrence relationships in the lettuce root microbiota. Environmental Microbiology, 2015, 17(1):239-252.
    [13] Parente E, Cocolin L, de Filippis F, Zotta T, Ferrocino I, O'Sullivan O, Neviani E, de Angelis M, Cotter PD, Ercolini D. Food Microbionet:A database for the visualisation and exploration of food bacterial communities based on network analysis. International Journal of Food Microbiology, 2016, 219:28-37.
    [14] Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal, 2012, 6(2):343-351.
    [15] Wang Y, Yuan B, Ji YC, Li H. Hydrolysis of hemicellulose to produce fermentable monosaccharides by plasma acid. Carbohydrate Polymers, 2013, 97(2):518-522.
    [16] Wu Q, Chen LQ, Xu Y. Yeast community associated with the solid state fermentation of traditional Chinese Maotai-flavor liquor. International Journal of Food Microbiology, 2013, 166(2):323-330.
    [17] Kong Y, Wu Q, Zhang Y, Xu Y. In situ analysis of metabolic characteristics reveals the key yeast in the spontaneous and solid-state fermentation process of Chinese light-style liquor. Applied and Environmental Microbiology, 2014, 80(12):3667-3376.
    [18] Ren GD, Ren WJ, Teng Y, Li ZG. Evident bacterial community changes but only slight degradation when polluted with pyrene in a red soil. Frontiers in Microbiology, 2015, 6:22.
    [19] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QⅡME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
    [20] Lemos LN, Fulthorpe RR, Triplett EW, Roesch LFW. Rethinking microbial diversity analysis in the high throughput sequencing era. Journal of Microbiological Methods, 2011, 86(1):42-51.
    [21] Gobbetti M, Minervini F, Pontonio E, di Cagno R, de Angelis M. Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. International Journal of Food Microbiology, 2016, 239:3-18.
    [22] Ambardar S, Sangwan N, Manjula A, Rajendhran J, Gunasekaran P, Lal R, Vakhlu J. Identification of bacteria associated with underground parts of Crocus sativus by 16S rRNA gene targeted metagenomic approach. World Journal of Microbiology & Biotechnology, 2014, 30(10):2?日??戲爷?嬹?监嵢??敛渲琳敝渠潃?????吠潙浵椠汋氬漠??????攬爠湃???㈠??測搠敌穩??慄爬挠??????慔?????慡祧慥?偯??乣甠??????敡穴?????晥晶敥捡瑬?漠晨?睧楨氠摬?獶瑥牬慳椠湯獦?潭晩??慯换瑩潡捬漠捡捲畳獥?汩慣挠瑭楥獴?潢湯?瑩桳敭?癧潥汮慥瑳椠汩敮?灡牣潴晩楶污整?慤渠摳?瑵桤敧?猠敡湮獤漠牣祯?捳桴慡牬愠捳瑥敤物業獥瑮楴捳献?潁晰?敬睩敥獤??物慣睲?浢楩汯歬?捧桹攠敡獮敤???潯畴牥湣慨汮?潬景??愬椠爲礰?匳挬椠改渷挨攲??呼??祝??????金????????ㄠ????扯牵?孬??崠??椠畔?塭???畡潵?????婡桵慢湥朠??堠???敧琦攣爲洳椲渻慳琠楍潃湃?漠晍?浴楡捧牥潮扯業慩汣?摩楮癳敩牧獨楴瑳礠?楮湴??慴煨略??慹?晡敭物浣敳渠瑯慦琠業潩湣?獯瑢慩牡瑬攠牣?捭畭汵瑮畩牴敩?潳映??愠潦瑯慯楤?氠楉煮畴潥牲??畴獩楯湮条?渠敊獯瑵敲摮?偬?副?搠敆湯慯瑤甠牍楩湣杲?杢物慯摬楯敧湹琬?朲攰氱‵攬氠攲挱琳爺漳瀱栭漳爹攮猼楢獲??圲漵牝氠摌??潓甬爠湌慩氠?漬映??極挠牘漬戠楌潵汯漠杌祘????楮漠瑗敆挮栠湂潡汣潴来祲?????????????????????????扴牥?季??嵮?剥潳樠慩獮?噳???楤氭??噡??倠楡??????慡杣慩?????慭湥穮慴湡慴物敯獮?偯??卓瑨畡摮楸敩猠?潧湥?愠捶敩瑮慥瑧敡?攮猠瑁数牰?灩牥潤搠畍捩瑣楲潯湢?扯祬?湧潹渠?卮慤挠捂桩慯牴潥浣票据敯獬?睧楹測攠′礰攱愶猬琠猱?‰?渱琰攩爺渴愳琹椵漭渴愴氱??漼畢牲渾慛氲?潝映??潮潮摥??楃挬爠潄扵楧潡汴漭杂祯??㈠ぅ?ㄠ???の?????????????扩牣?嬠??崬??敲湬杩?塧??圠畆?儠??坡慵湤朠????坯慮湮条??入???栠敉湮??关??塧畡?奩???浯灦爠潴癨楥渠条?晴汩慶癩潴特?浯敦琠慴扨潥氠業獩浣?潯景?卧慡据捩桳慭牳漠浩祮挠敡猠?捥敢牬敯癣楨獯楮愭敳?批祬?洠楣硨敥摥?捥甠汢瑹甠牭敥?睡楴瑲桡??慣捲楩汰汴畯獭?汣椠捡桮敡湬楹晳潩牳洮椠獆?景潮牴??桲楳渠敩獮攠??慣潲瑯慢楩?晬汯慧癹漬爠′氰椱然甬漠爷?洵愳欶椮渼杢? ̄?漲男牝渠慁汷?潳晴??渠摁甬猠瑓物楮慧汨??椬挠牓潯扮楩漠汓潋本礠????楨漠瑒攬挠桋湡潬汲潡朠祁??自ど?????????????ぴ????????扵牲?孮??崠?婦栠数湲杯?塵坣???慩煴畹?慯?琠牢慡摣楴瑥楲潩湡慬氠?景敭牭浵敮湩瑴慩瑥楳漠湵?獤瑥慲爠瑡敢物?楴湩??桰楥湲慴?浲楢捡牴潩扯楮慳氮?敔捨潥氠潉杓祍?愠湊摯?晲畮湡捬琬椠漲渰愱水椬琠礸???漩挺琲漴爴‵?椲猴猵攲爮琼慢瑲椾潛渲?潝映?坵愠村攬渠楘湵朠教測?啃湨楥癮攠牌獑椮琠祄???ひ????戠牯?嬠??嵡??愠楳湰??????敤祵?呩????略浲慭牥?却???當桥愠摰?副???偳爠潣摯畮捴瑲楩潢湵?潩普?琠桴敯爠浃潨獩瑮慥扳汥攠?桡祯摴牡潩氭慦獬敡獶??捲攠汬汩畱汵慯獲攠獭?慫湩摮?砮礠汌慥湴慴獥敲??晩牮漠流?呰桬敩牥浤漠慍獩捣畲獯?慩畯牬慯湧瑹椬愠挲田猱′刬????愴?瀺漳琰攱渭琳椰愷氮?晢畲渾杛甲猹???楡潡火牳潯挠敋猬猠?慯湳摫??楮潩獥祭獩琠敋洬猠??湰杯楮湥敮攠牊椬渠杋???ち?????????????????? Salusjärvi T, Auvinen P, Savijoki K, Nyman TA, Kalkkinen N, Tynkkynen S, Varmanen P. Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium. Microbial Biotechnology, 2011, 4(6):746-766.
    [30] Annan NT, Poll L, Sefa-Dedeh S, Plahar WA, Jakobsen M. Volatile compounds produced by Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei in single starter culture fermentations of Ghanaian maize dough. Journal of Applied Microbiology, 2003, 94(3):462-474.
    [31] de Angelis M, Calasso M, Cavallo N, di Cagno R, Gobbetti M. Functional proteomics within the genus Lactobacillus. Proteomics, 2016, 16(6):946-9
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王鹏,吴群,徐岩. 中国白酒发酵过程中的核心微生物群及其与环境因子的关系[J]. 微生物学报, 2018, 58(1): 142-153

复制
分享
文章指标
  • 点击次数:1930
  • 下载次数: 3155
  • HTML阅读次数: 807
  • 引用次数: 0
历史
  • 收稿日期:2017-02-14
  • 最后修改日期:2017-03-17
  • 在线发布日期: 2018-01-02
文章二维码