双向电泳和质谱技术分析樟芝无性孢子萌发相关蛋白
作者:
基金项目:

国家自然科学基金(31401931)


Analysis of germination-related proteins in Antrodia camphorata athroconidia by two-dimensional electrophoresis and mass spectrum
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]采用双向电泳(2DE)、质谱技术和实时荧光定量PCR (RT-qPCR)技术分析樟芝无性孢子萌发相关蛋白。[方法]分别提取培养0 h和24 h的樟芝孢子总蛋白并进行双向电泳分离,再用PDQuest软件进行差异蛋白分析,并用MALDI-TOF-MS技术对差异蛋白进行鉴定;其次将鉴定成功的蛋白与孢子萌发相关蛋白的本地数据库进行比对,获得樟芝中的孢子萌发相关蛋白信息,最后用RT-qPCR技术对相关基因的转录水平进行分析。[结果]两组样品共有32个差异蛋白点,其中在24 h表达量上调的蛋白25个,下调的蛋白7个。将32个差异蛋白点挖取鉴定,成功鉴定24个。其中,与孢子萌发相关的蛋白有10个,分别为GerO、Ubc1、Cat-1、Snf1、Cas2、SfaD、Chaperonin、Fad5、Tyrosine-P和ChiA。[结论]该研究结果为进一步解析樟芝无性孢子萌发的分子机制提供了理论依据。

    Abstract:

    [Objective] Germination-related proteins in Antrodia camphorata athroconidia were analyzed by two-dimensional gel electrophoresis (2DE), mass spectrum, and real time fluorescent quantitative PCR (RT-qPCR).[Methods] We used 2DE to analyze total proteins of Antrodia camphorata arthroconidia after 0 h and 24 h of incubation. We identified differential proteins by PDQuest software and MALDI-TOF-MS. Then, we obtained germination-related proteins in Antrodia camphorata arthroconidia by matching the amino acid sequences of identified proteins to a local protein database. Finally, we used RT-qPCR to quantify relative expression levels of germination-related genes.[Results] A total of 32 differential expressed proteins, of which 25 up-regulated and 7 down-regulated, existed between non-germinated (0 h) and germinated (24 h) arthroconidia. Among these differential proteins, 24 proteins were successfully identified, and 10 proteins were involved in arthroconidial germination including GerO, Ubc1, Cat-1, Snf1, Cas2, SfaD, Chaperonin, Fad5, Tyrosine-P, and ChiA.[Conclusion] The results provide a theoretical basis for understanding of molecular mechanisms of athroconial germination of Antrodia camphorata.

    参考文献
    [1] Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XJ, Dou WF. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. Journal of Ethnopharmacology, 2009, 121(2):194-212.
    [2] Wu H, Pan CL, Yao YC, Chang SS, Li SL, Wu TF. Proteomic analysis of the effect of Antrodia camphorata extract on human lung cancer A549 cell. Proteomics, 2006, 6(3):826-835.
    [3] Geethangili M, Tzeng YM. Review of pharmacological effects of Antrodia camphorata and its bioactive compounds. Evidence-Based Complementary and Alternative Medicine, 2011, 2011:Article ID 212641.
    [4] Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacology and Therapeutics, 2013, 139(2):124-156.
    [5] Geng Y, He Z, Lu ZM, Xu HY, Xu GH, Shi JS, Xu ZH. Antrodia camphorata ATCC 200183 sporulates asexually in submerged culture. Applied Microbiology and Biotechnology, 2013, 97(7):2851-2858.
    [6] Lu ZM, He Z, Li HX, Gong JS, Geng Y, Xu HY, Xu GH, Shi JS, Xu ZH. Modified arthroconidial inoculation method for the efficient fermentation of Antrodia camphorata ATCC 200183. Biochemical Engineering Journal, 2014, 87:41-49.
    [7] Li HX, Lu ZM, Geng Y, Gong JS, Zhang XJ, Shi JS, Xu ZH, Ma YH. Efficient production of bioactive metabolites from Antrodia camphorata ATCC 200183 by asexual reproduction-based repeated batch fermentation. Bioresource Technology, 2015, 194:334-343.
    [8] Lu MYJ, Fan WL, Wang WF, Chen T, Tang YC, Chu FH, Chang TT, Wang SY, Li MY, Chen YH, Lin ZS, Yang KJ, Chen SM, Teng YC, Lin YL, Shaw JF, Wang TF, Li WH. Genomic and transcriptomic analyses of the medicinal fungus Antrodia cinnamomea for its metabolite biosynthesis and sexual development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(44):E4743-E4752.
    [9] Lin YL, Wen TN, Chang ST, Chu FH. Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan. International Journal of Medicinal Mushrooms, 2011, 13(5):473-481.
    [10] Xu WN, Wang JJ, Li Q. Comparative proteome and transcriptome analysis of lager brewer's yeast in the autolysis process. FEMS Yeast Research, 2014, 14(8):1273-1285.
    [11] Lafon A, Seo JA, Han KH, Yu JH, D'Enfert C. The heterotrimeric G-protein GanB(α)-SfaD(β)-GpgA(γ) is a carbon source sensor involved in early cAMP-dependent germination in Aspergillus nidulans. Genetics, 2005, 171(1):71-80.
    [12] Hu WQ, Zhang XP, Chen X, Zheng JW, Yin YY, Ma ZH. α1-Tubulin FaTuA1 plays crucial roles in vegetative growth and conidiation in Fusarium asiaticum. Research in Microbiology, 2015, 166(3):132-142.
    [13] Budniak A, O'Daya DH. Tyrosine phosphorylation of actin during microcyst formation and germination in Polysphondylium pallidum. Protist, 2011, 162(3):490-502.
    [14] Saegusa K, Sato M, Sato K, Nakajima-Shimada J, Harada A, Sato K. Caenorhabditis elegans chaperonin CCT/TRiC is required for actin and tubulin biogenesis and microvillus formation in intestinal epithelial cells. Molecular Biology of the Cell, 2014, 25(20):3095-3104.
    [15] Lounds C, Eagles J, Carter AT, MacKenzie DA, Archer DB. Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Archives of Microbiology, 2007, 188(4):299-305.
    [16] Lee SH, Lee J, Lee S, Park EH, Kim KW, Kim MD, Yun SH, Lee YW. GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryotic Cell, 2009, 8(1):116-127.
    [17] Elleuche S, Pöggeler S. β-Carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora. PLoS ONE, 2009, 4(4):e5177.
    [18] Yamazaki H, Tanaka A, Kaneko J, Ohta A, Horiuchi H. Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genetics and Biology, 2008, 45(6):963-972.
    [19] Wang NY, Yoshida Y, Hasunuma K. Loss of Catalase-1(Cat-1) results in decreased conidial viability enhanced by exposure to light in Neurospora crassa. Molecular Genetics and Genomics, 2007, 277(1):13-22.
    [20] Li YG, Yang MX, Li Y, Liu WW, Wen JZ, Li YH. Differential gene and protein expression in soybean at early stages of incompatible interaction with Phytophthora sojae. Agricultural Sciences in China, 2011, 10(6):902-910.
    [21] King HC, Sinha AA. Gene expression profile analysis by DNA microarrays:promise and pitfalls. JAMA:The Journal of the American Medical Association, 2001, 286(18):2280-2288.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱青,陆震鸣,李华祥,史劲松,许正宏. 双向电泳和质谱技术分析樟芝无性孢子萌发相关蛋白[J]. 微生物学报, 2018, 58(1): 166-173

复制
分享
文章指标
  • 点击次数:819
  • 下载次数: 1320
  • HTML阅读次数: 841
  • 引用次数: 0
历史
  • 收稿日期:2017-02-27
  • 最后修改日期:2017-03-29
  • 在线发布日期: 2018-01-02
文章二维码