应用竞争力指数分析III型效应子SKWP对青枯菌在寄主植物体内增殖能力的影响
作者:
基金项目:

中央高校基本科研业务费(GK201703068);校级重点实验室创新平台(1111090010)


Analysis of the SKWP effectors to bacterial fitness in host plant by a novel competition assay
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]研究Ⅲ型效应子SKWP对青枯菌OE1-1在寄主植物体内增殖能力的影响。[方法]构建青枯菌RK7197(野生型突变体,带Gm抗性)和SKWP单基因缺失突变体(带PB抗性),通过竞争力指数分析SKWP各效应子对青枯菌OE1-1在叶片组织内增殖能力的影响。[结果]竞争力指数适合在寄主植物茄子上分析各效应子功能,6个SKWP效应子对OE1-1细菌增殖能力影响不同,SKWP4影响最明显。[结论]竞争力指数可提供一个新视野来分析SKWP各效应子对青枯菌OE1-1在寄主茄子上增殖能力的影响。

    Abstract:

    [Objective] By testing the internal bacterial growth of SKWP mutants generated in Ralstonia solanacearum strain OE1-1, we evaluated the contribution of these SKWP effectors to bacterial fitness towards host plants. [Methods] The deletion mutant and complementation mutant of R. solanacearum OE1-1 were constructed. A competition assay in mixed infection was adopted to evaluate the contribution of the SKWP to bacterial fitness in tobacco (Nicotiana tabacum cv. Bright Yellow) and eggplant (Solanum melongena cv. Senryo-nigou). [Results] Eggplant was the appropriate host for competitive index (CI) assay of R. solanacearum strain OE1-1. All 6 SKWP mutants affected bacterial fitness in eggplant to some extent while SKWP4 appeared to be most important.[Conclusion] The SKWP effectors were important for bacterial proliferation in eggplant tissues according to the CI analysis, which paving a new way for further identification of the function on whole SKWP family.

    参考文献
    [1] Deslandes L, Genin S. Opening the Ralstonia solanacearum type Ⅲ effector tool box:insights into host cell subversion mechanisms. Current Opinion in Plant Biology, 2014, 20:110-117.
    [2] Huet G. Breeding for resistances to Ralstonia solanacearum.Frontiers in Plant Science, 2014, 5:715.
    [3] Muthamilarasan M, Prasad M. Plant innate immunity:an updated insight into defense mechanism. Journal of Biosciences, 2013, 38(2):433-449.
    [4] van der Linden L, Bredenkamp J, Naidoo S, Fouché-Weich J, Denby KJ, Genin S, Marco Y, Berger DK. Gene-for-gene tolerance to bacterial wilt in Arabidopsis.Molecular Plant-Microbe Interactions, 2013, 26(4):398-406.
    [5] Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. Annual Review of Phytopathology, 2013, 51:521-542.
    [6] Khan M, Subramaniam R, Desveaux D. Of guards, decoys, baits and traps:pathogen perception in plants by type Ⅲ effector sensors. Current Opinion in Microbiology, 2016, 29:49-55.
    [7] Delga A, le Roux C, Deslandes L. Plant immune receptor decoy:pathogens in their own trap. Oncotarget, 2015, 6(18):15748-15749.
    [8] Solé M, Popa C, Mith O, Sohn KH, Jones JDG, Deslandes L, Valls M. The awr gene family encodes a novel class of Ralstonia solanacearum type Ⅲ effectors displaying virulence and avirulence activities. Molecular Plant-Microbe Interactions, 2012, 25(7):941-953.
    [9] Macho AP, Zumaquero A, Ortiz-Martín I, Beuzón CR. Competitive index in mixed infections:a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Molecular Plant Pathology, 2007, 8(4):437-450.
    [10] Macho AP, Ruiz-Albert J, Tornero P, Beuzón CR. Identification of new type Ⅲ effectors and analysis of the plant response by competitive index. Molecular Plant Pathology, 2009, 10(1):69-80.
    [11] Macho AP, Guidot A, Barberis P, Beuzón CR, Genin S. A competitive index assay identifies several Ralstonia solanacearum type Ⅲ effector mutant strains with reduced fitness in host plants. Molecular Plant-Microbe Interactions, 2010, 23(9):1197-1205.
    [12] Beuzón CR, Holden DW. Use of mixed infections with Salmonella strains to study virulence genes and their interactions in vivo.Microbes and Infection, 2001, 3(14/15):1345-1352.
    [13] Angot A, Peeters N, Lechner E, Vailleau F, Baud C, Gentzbittel L, Sartorel E, Genschik P, Boucher C, Genin S. Ralstonia solanacearum requires F-box-like domain-containing type Ⅲ effectors to promote disease on several host plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(39):14620-14625.
    [14] Mukaihara T, Tamura N. Identification of novel Ralstonia solanacearum type Ⅲ effector proteins through translocation analysis of hrpB-regulated gene products. Microbiology, 2009, 155(7):2235-2244.
    [15] Chen L, Shirota M, Zhang Y, Kiba A, Hikichi Y, Ohnishi K. Involvement of HLK effectors in Ralstonia solanacearum disease development in tomato. Journal of General Plant Pathology, 2014, 80(1):79-84.
    [16] Peeters N, Carrère S, Anisimova M, Plener L, Cazalé AC, Genin S. Repertoire, unified nomenclature and evolution of the Type Ⅲ effector gene set in the Ralstonia solanacearum species complex. BMC Genomics, 2013, 14:859.
    [17] le Roux C, Huet G, Jauneau A, Camborde L, Trémousaygue D, Kraut A, Zhou BB, Levaillant M, Adachi H, Yoshioka H, Raffaele S, Berthomé R, Couté Y, Parker JE, Deslandes L. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell, 2015, 161(5):1074-1088.
    [18] Peeters N, Guidot A, Vailleau F, Valls M. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Molecular Plant Pathology, 2013, 14(7):651-662.
    [19] Jacobs JM, Babujee L, Meng FH, Milling A, Allen C. The in planta transcriptome of Ralstonia solanacearum:conserved physiological and virulence strategies during bacterial wilt of tomato. mBio, 2012, 3(4):e00114-12.
    [20] Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum.Journal of Bacteriology, 2006, 188(10):3697-3708.
    [21] Vasse J, Frey P, Trigalet A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum.Molecular Plant-Microbe Interactions, 1995, 8(2):241-251.
    [22] Wei CH, Chen JJ, Kuang HH. Dramatic number variation of R genes in Solanaceae species accounted for by a few R gene subfamilies. PLoS One, 2016, 11(2):e0148708.
    [23] Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Saucet SB, Wirthmueller L, Menke FLH, Sohn KH, Jones JDG. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell, 2015, 161(5):1089-1100.
    [24] Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in Gram negative bacteria. Nature Biotechnology, 1983, 1(9):784-791.
    [25] Kanda A, Ohnishi S, Tomiyama H, Hasegawa H, Yasukohchi M, Kiba A, Ohnishi K, Okuno T, Hikichi Y. Type Ⅲ secretion machinery-deficient mutants of Ralstonia solanacearum lose their ability to colonize resulting in loss of pathogenicity. Journal of General Plant Pathology, 2003, 69(4):250-257.
    [26] Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR, Schweizer HP. A Tn7-based broad-range bacterial cloning and expression system. Nature Methods, 2005, 2(6):443-448.
    [27] Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the chromosome of Corynebacterium glutamicum.Gene, 1994, 145(1):69-73.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈立,李建科,成田雅敏,大西浩平. 应用竞争力指数分析III型效应子SKWP对青枯菌在寄主植物体内增殖能力的影响[J]. 微生物学报, 2018, 58(3): 432-442

复制
分享
文章指标
  • 点击次数:1061
  • 下载次数: 1658
  • HTML阅读次数: 945
  • 引用次数: 0
历史
  • 收稿日期:2017-05-03
  • 最后修改日期:2017-05-22
  • 在线发布日期: 2018-02-12
文章二维码