三峡库区水体中硫氧化菌的群落多样性
作者:
基金项目:

国家自然科学基金(41672331);中央高校基本研科业务费专项(CUGQYZX1730)


Diversity of sulfur-oxidizing bacteria in waters of the Three Gorges Reservoir, China
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]探究三峡库区干流和支流水体硫氧化菌群落组成和多样性及其与水体理化性质的相关性。[方法]于2017年3月在三峡库区支流和干流共选取9个采样点,测量各采样点水体理化参数,针对水体样品的soxB基因进行系统发育分析、聚类分析和多样性分析,并分析水体理化性质与硫氧化菌群落组成和多样性的相关性。[结果]克隆文库分析显示,本研究的三峡库区水体样品中硫氧化菌分属于α-Proteobacteria和β-Proteobacteria纲,其中β-Proteobacteria的硫氧化菌是群落构成主体,在干流和支流的采样点中相对丰度均高于95.6%。聚类分析和主坐标分析(PCoA)显示,各支流采样点之间以及支流样点和其对应干流样点之间的硫氧化菌群落构成差异较大,而干流采样点间硫氧化菌群落构成差异较小。Mantel检验结果显示,硫氧化菌群落组成与水体的温度、盐度、溶氧量、藻含量和pH等理化参数呈显著(P < 0.05)相关。Pearson相关性分析显示硫氧化菌的群落多样性与藻含量和DIC呈现显著负相关。[结论]三峡库区支流和干流水体中硫氧化菌主要由β-Proteobacteria纲构成,库区干流水体中硫氧化菌群落构成较为相似,而不同支流水体中的硫氧化菌群落构成差异较明显,并且支流和对应干流交汇处的水体中硫氧化菌群落组成差异明显,水体理化性质是导致这一差异的重要原因之一。

    Abstract:

    [Objective] To explore the composition and diversity of sulfur-oxidizing bacteria (SOB) community and its response to environmental variables in the mainstream and branches of the Three Gorges Reservoir (TGR). [Methods] A total of nine sampling locations were selected along the mainstream and branches of the TGR in March 2017. The physical and chemical parameters were measured on the sampled waters, followed by soxB gene-based phylogenetic analyses. The correlation analysis was performed between the physicochemical properties of the sampled waters and the composition and diversity of sulfur-oxidizing bacterial community. [Results] SOB in the collocted TGR waters belonged to α-Proteobacteria and β-Proteobacteria, with the the latter being dominant (relative abundance was higher than 95.6% in the studied mainstream and branch samples). Cluster analysis and principal coordinate analysis (PCoA) showed that the branch samples are scattered with each other and with their corresponding mainstream sample, while the mainstream sampls are relatively more centralized. The Mantel test showed that the SOB population composition was significantly (P < 0.05) correlated with the measured physicochemical parameters (i.e. water temperature, salinity, dissolved oxygen, algal content and pH) of the water samples. Pearson correlation analysis showed that the community diversity of sulfur-oxidizing bacteria was negatively correlated with algal content and dissolved inorganic carbon (DIC). [Conclusion] The SOB in the branch and mainstream TGR waters mainly belongs to the Proteobacteria. The composition of the SOB populations is similar among the mainstream samples, whereas the SOB population composition in the branch samples differs with each other and with their corresponding mainstream samples. This situation is mainly caused by the characteristic physical and chemical properties of the TGR waters.

    参考文献
    [1] Canfield DE, Kristensen E, Thamdrup B. The sulfur cycle. Advances in Marine Biology, 2005, 48:313-381.
    [2] Friedrich CG, Bardischewsky F, Rother D, Quentmeie A, Fischer J. Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 2005, 8(3):253-259.
    [3] 谭小琴. 珠江水体硫氧化细菌多样性及其硫代谢途径研究. 华南理工大学硕士学位论文, 2016.
    [4] Lens PNL, Kuenen JG. The biological sulfur cycle:novel opportunities for environmental biotechnology. Water Science and Technology, 2001, 44(8):57-66.
    [5] Ford BJ. Microbe Power:Tomorrow's Revolution. New York:Stein & Day Pub, 1976.
    [6] Suess E. Effects of microbe activity. Nature, 1988, 333(6168):17-18.
    [7] 罗剑飞. 硫氧化菌群落结构分析及其特性研究. 华南理工大学博士学位论文, 2011.
    [8] 李少能. 南大西洋深海硫氧化细菌的分离鉴定与多样性初步分析. 福建农林大学硕士学位论文, 2012.
    [9] Mever B, Kuever J. Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Applied and Environmental Microbiology, 2007, 73(23):7664-7679.
    [10] Mever B, Imhoff JF, Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology, 2007, 9(12):2957-2977.
    [11] Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiology Ecology, 2003, 43(3):393-409.
    [12] Yang J, Jiang HC, Dong HL, Wu G, Hou WG, Zhao WY, Sun YJ, Lai ZP. Abundance and diversity of sulfur-oxidizing bacteria along a salinity gradient in four Qinghai-Tibetan Lakes, China. Geomicrobiology Journal, 2013, 30(9):851-860.
    [13] Aguilar JRP, Cabriales JJP, Vega MM. Identification and characterization of sulfur-oxidizing bacteria in an artificial wetland that treats wastewater from a tannery. International Journal of Phytoremediation, 2008, 10(5):359-370.
    [14] Zhang S, Yan L, Chen ZB. Geographical distribution of sulfur-oxidizing bacteria. Journal of Heilongjiang Bayi Agricultural University, 2017, 29(2):68-73. (in Chinese)张爽, 晏磊, 陈志宝. 硫氧化菌的地域分布特征. 黑龙江八一农垦大学学报, 2017, 29(2):68-73.
    [15] Huang YN, Ji DB, Long LH, Liu DF, Song LX, Su QQ. The variance analysis of characteristics and blooms of the typical tributaries of the Three Gorges Reservoir in spring. Resources and Environment in the Yangtze Basin, 2017, 26(3):461-470. (in Chinese)黄亚男, 纪道斌, 龙良红, 刘德富, 宋林旭, 苏青青. 三峡库区典型支流春季特征及其水华优势种差异分析. 长江流域资源与环境, 2017, 26(3):461-470.
    [16] Zhu AM, Hu JX, Li SX, Zhou LF, Liang YG. Phytoplankton diversity and water quality in the main stream and tributaries of Three Gorges Reservoir region of Yangtze River during dry seasons. Journal of Lake Sciences, 2013, 25(3):378-385. (in Chinese)朱爱民, 胡菊香, 李嗣新, 周连凤, 梁友光. 三峡水库长江干流及其支流枯水期浮游植物多样性与水质. 湖泊科学, 2013, 25(3):378-385.
    [17] 冉祥滨. 三峡水库营养盐分布特征与滞留效应研究. 中国海洋大学博士学位论文, 2009.
    [18] Bernhard AE, Colbert D, McManus J, Field KG. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries. FEMS Microbiology Ecology, 2005, 52(1):115-128.
    [19] Liang XL, Pan ZQ, Wang AP, Yao XX, Liu LJ, Zhou T. Determination of dissolved oxygen in water by iodometric method. Chemical Analysis and Meterage, 2008, 17(2):54-56. (in Chinese)梁秀丽, 潘忠泉, 王爱萍, 姚旭霞, 刘立君, 周彤. 碘量法测定水中溶解氧. 化学分析计量, 2008, 17(2):54-56.
    [20] Liu ZK. Determination of carbonate and bicarbonate content in mixed alkali——double mixed indicator method. Journal of Zhengzhou University(Engineering Science), 1981, (1):120-126. (in Chinese)刘镇琨. 混合碱中碳酸根和碳酸氢根含量的测定——双混合指示剂法. 郑州工学院学报, 1981, (1):120-126.
    [21] Chen W, Zeng GN, Zhou Y, Yu J, Long H, Huang C, Peng JP. Determination of phosphorus in seaweed by molybdenum blue spectrophotometry. Marine Environmental Science, 2009, 28(S1):79-82. (in Chinese)陈委, 曾淦宁, 周燕, 余骏, 龙华, 黄城, 彭建平. 磷钼蓝光度法测定海藻中磷的含量. 海洋环境科学, 2009, 28(S1):79-82.
    [22] Xiao YD. Alkaline potassium persulfate digestion UV spectrophotometric method for determination of total nitrogen in water by the method of. Guangdong Chemical Industry, 2012, 39(4):165-166, 135. (in Chinese)萧玉端. 碱性过硫酸钾消解紫外分光光度法测定水中总氮的方法探讨. 广东化工, 2012, 39(4):165-166, 135.
    [23] Qian KM, Liu X, Chen YW. A review on methods of cell enumeration and quantification of freshwater phytoplankton. Journal of Lake Sciences, 2015, 27(5):767-775. (in Chinese)钱奎梅, 刘霞, 陈宇炜. 淡水浮游植物计数与定量方法. 湖泊科学, 2015, 27(5):767-775.
    [24] Sun X, Wang HR, Yang ZW, Yin J. Comparison of three methods for measuring biomass of algae. Journal of Preventive Medicine of Chinese People's Liberation Army, 2012, 30(5):350-351. (in Chinese)孙欣, 王华然, 杨忠委, 尹静. 三种藻类生物量测定方法比较. 解放军预防医学杂志, 2012, 30(5):350-351.
    [25] Tourna M, Maclean P, Condron L, O'Callaghan M, Wakelin SA. Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 2014, 88(3):538-549.
    [26] Jiang HC, Dong HL, Yu BS, Lv G, Deng SC, Berzins N, Dai MH. Diversity and abundance of Ammonia-Oxidizing Archaea and Bacteria in Qinghai Lake, Northwestern China. Geomicrobiology Journal, 2009, 26(3):199-211.
    [27] Osborn AM, Moore ERB, Timmis KN. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environmental Microbiology, 2000, 2(1):39-50.
    [28] Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Holister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF. Introducing mothur:Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009, 75(23):7537-7541.
    [29] Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Proceedings of the Nucleic Acids Symposium Series, 1999, 41:95-98.
    [30] Kirchman DL, Dittel AI, Malmstrom RR, Cottrell MT. Biogeography of major bacterial groups in the Delaware Estuary. Limnology and Oceanography, 2005, 50(5):1697-1706.
    [31] Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews, 2011, 75(1):14-49.
    [32] Šimek K, Kasalický V, Zapomělová E, Horňák K. Alga-derived substrates select for distinct betaproteobacterial lineages and contribute to niche separation in Limnohabitans strains. Applied and Environmental Microbiology, 2011, 77(20):7307-7315.
    [33] Šimek K, Kasalický V, Jezbera J, Jezberová J, Hejzlar J, Hahn MW. Broad habitat range of the phylogenetically narrow R-BT065 cluster, representing a core group of the betaproteobacterial genus Limnohabitans. Applied and Environmental Microbiology, 2010, 76(3):631-639.
    [34] Alonso C, Zeder M, Piccini C, Conde D, Pernthaler J. Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environmental Microbiology, 2009, 11(4):867-876.
    [35] Šimek K, Horňák K, Jezbra J, Nedoma J, Vrba J, Straškrábová V, Macek M, Dolan JR, Hahn MW. Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environmental Microbiology, 2006, 8(9):1613-1624.
    [36] Salcher MM, Pernthaler J, Zeder M, Psenner R, Posch T. Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environmental Microbiology, 2008, 10(8):2074-2086.
    [37] Horňák K, Jezbera J, Nedoma J, Gasol JM, Šimek K. Effects of resource availability and bacterivory on leucine incorporation in different groups of freshwater bacterioplankton, assessed using microautoradiography. Aquatic Microbial Ecology, 2006, 45(3):277-289.
    [38] Yang SP, Lin ZH, Cui XH, Lian JK, Zhao CG, Qu YB. Current taxonomy of anoxygenic phototrophic bacteria——a review. Acta Microbiologica Sinica, 2008, 48(11):1562-1566. (in Chinese)杨素萍, 林志华, 崔小华, 连建科, 赵春贵, 曲音波. 不产氧光合细菌的分类学进展. 微生物学报, 2008, 48(11):1562-1566.
    [39] Jackson SA, Kennedy J, Morrissey JP, O'Gara F, Dobson ADW. Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microbial Ecology, 2012, 64(1):105-116.
    [40] Beatty JT, Overmann J, Lince MT, Manske AK, Lang AS, Blankenship RE, van Dover CL, Martinson TA, Plumley FG. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(26):9306-9310.
    [41] Overmann J, Cypionka H, Pfennig N. An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnology and Oceanography, 1992, 37(1):150-155.
    [42] Ward DM, Ferris MJ, Nold SC, Bateson MM. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiology and Molecular Biology Reviews, 1998, 62(4):1353-1370.
    [43] Kampf C, Pfennig N. Capacity of chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violacea and Chromatium vinosum. Archives of Microbiology, 1980, 127(2):125-135.
    [44] Liu CQ, Wang FS, Wang YC, Wang BL. Responses of aquatic environment to river damming——from the geochemical view. Resources and Environment in the Yangtze Basin, 2009, 18(4):384-396. (in Chinese)刘丛强, 汪福顺, 王雨春, 王宝利. 河流筑坝拦截的水环境响应——来自地球化学的视角. 长江流域资源与环境, 2009, 18(4):384-396.
    [45] Hill WR, Ryon MG, Schilling EM. Light limitation in a stream ecosystem:responses by primary producers and consumers. Ecology, 1995, 76(4):1297-1309.
    [46] Kiffney PM, Richardson JS, Bull JP. Responses of periphyton and insects to experimental manipulation of riparian buffer width along forest streams. Journal of Applied Ecology, 2003, 40(6):1060-1076.
    [47] Xing P, Kong FX, Gao G. Phylogenetic diversity and seasonal variation of bacterioplankton communities in Lake Taihu. Journal of Lake Science, 2007, 19(4):373-381. (in Chinese)邢鹏, 孔繁翔, 高光. 太湖浮游细菌种群基因多样性及其季节变化规律. 湖泊科学, 2007, 19(4):373-381.
    [48] Jasti S, Sieracki ME, Poulton NJ, Giewat MW, Rooney-Varga JN. Phylogenetic diversity and specificity of bacteria closely associated with Alexandrium spp. and other phytoplankton. Applied and Environmental Microbiology, 2005, 71(7):3483-3494.
    [49] Pearce DA. The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microbiology Ecology, 2005, 53(1):61-72.
    [50] Kan JJ, Crump BC, Wang K, Chen F. Bacterioplankton community in Chesapeake Bay:Predictable or random assemblages. Limnology and Oceanography, 2006, 51(5):2157-2169.
    [51] Hu YL, Wang SL, Yan SK. Research advances on the factors influencing the activity and community structure of soil microorganism. Chinese Journal of Soil Science, 2006, 37(1):170-176. (in Chinese)胡亚林, 汪思龙, 颜绍馗. 影响土壤微生物活性与群落结构因素研究进展. 土壤通报, 2006, 37(1):170-176.
    [52] Kirchman DL, Rich JH. Regulation of bacterial growth rates by dissolved organic carbon and temperature in the Equatorial Pacific Ocean. Microbial Ecology, 1997, 33(1):11-20.
    [53] Yannarell AC, Triplett EW. Geographic and environmental sources of variation in lake bacterial community composition. Applied and Environmental Microbiology, 2005, 71(1):227-239.
    [54] Okabe S, Odagiri M, Ito T, Satoh H. Succession of sulfur-oxidizing bacteria in the microbial community on corroding concrete in sewer systems. Applied and Environmental Microbiology, 2007, 73(3):971-980.
    [55] Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CL. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 2007, 9(10):2603-2621.
    [56] Chen Z, He D, Ren LJ. The potential impacts of temperature and nutrient levels on freshwater bacterioplankton community structure. Journal of Nanjing University(Natural Sciences), 2016, 52(4):590-600. (in Chinese)陈祯, 何聃, 任丽娟. 温度和营养盐水平对淡水浮游细菌群落结构的潜在影响. 南京大学学报(自然科学), 2016, 52(4):590-600.
    [57] Winter C, Hein T, Kavka G, Mach RL, Farnleitner AH. Longitudinal changes in the bacterial community composition of the Danube River:a whole-river approach. Applied and Environmental Microbiology, 2007, 73(2):421-431.
    [58] Cao XY, Xu HM, Wang SC, Huang R, Shen F, He XW, Yu ZB, Zhao DY. Seasonal variation of bacterioplankton community structure and it's relationship with environmental factors of Mochou Lake and Zixia Lake in Nanjing. Chemistry and Bioengineering, 2016, 33(12):19-26, 30. (in Chinese)曹新益, 徐慧敏, 王司辰, 黄睿, 沈烽, 何肖微, 余钟波, 赵大勇. 南京莫愁湖与紫霞湖浮游细菌群落结构的季节性变化及其与环境因子的关系. 化学与生物工程, 2016, 33(12):19-26, 30.
    [59] Wang XL, Liu XT, Wu YJ. Analysis of water environment characteristics and purification ability of Honghu Lake Wetland in Jianghan Plain. Journal of Wuhan University (Natural Science Edition), 2003, 49(2):217-220. (in Chinese)王学雷, 刘兴土, 吴宜进. 洪湖水环境特征与湖泊湿地净化能力研究. 武汉大学学报(理学版), 2003, 49(2):217-220.
    [60] Dodds WK. Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology & Evolution, 2007, 22(12):669-676.
    [61] Yang MX, Liu ZH, Sun HL, Yang R, Chen B. Organic carbon source tracing and DIC fertilization effect in the Pearl River:insights from lipid biomarker. Earth and Environment, 2017, 45(1):46-56. (in Chinese)杨明星, 刘再华, 孙海龙, 杨睿, 陈波. 基于生物标志物法的珠江流域有机碳溯源及DIC施肥效应研究. 地球与环境, 2017, 45(1):46-56.
    [62] Huang DJ, Qi SB, Yu XJ. Distribution characteristics of dissolved inorganic carbon in the Daya Bay in Spring. Ecological Science, 2012, 31(1):75-79. (in Chinese)黄道建, 綦世斌, 于锡军. 大亚湾春季溶解无机碳的分布特征. 生态科学, 2012, 31(1):75-79.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

储巧玲,杨渐,蒋宏忱. 三峡库区水体中硫氧化菌的群落多样性[J]. 微生物学报, 2018, 58(4): 584-597

复制
分享
文章指标
  • 点击次数:1004
  • 下载次数: 1910
  • HTML阅读次数: 518
  • 引用次数: 0
历史
  • 收稿日期:2017-08-22
  • 最后修改日期:2017-11-08
  • 在线发布日期: 2018-04-08
文章二维码