海洋固氮菌和解磷菌的分离鉴定及发酵条件优化
作者:
基金项目:

中国科学院战略性先导科技专项A(XDA13020300,XDA11020305);国家自然科学基金(41276113,41276114,41406191,41676163);广东省公益研究与能力建设专项资金(2015A020216016);国家“863计划”(2012AA092104,2013AA092901,2013AA092902);广东省科技计划项目(2014B030301064);国家重点研发计划(2017YFC0506301);海南海岸带生态系统修复生物固氮菌剂的关键技术研究(XH201415)


Isolation,characterization and culture optimization of nitrogen-fixing and phosphate-solubilizing bacteria from rhizosphere sediments of Halophila ovalis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    [目的]从西沙喜盐草根际沉积物中分离纯化得到具有高效固氮能力及解磷能力的菌株。优化其发酵培养条件,研究其制备海洋微生物菌剂的可能性。[方法]从形态学特征、生理生化、16S rDNA及功能基因水平进行鉴定,通过乙炔还原法、钼锑抗显色法检测菌株的固氮酶活性和解磷能力,单因素法和响应面法优化其发酵培养条件,溶血试验和急性毒性实验鉴定菌株的安全性。[结果]结果表明,菌株AZ16属于星箭头菌(Sagittula stellate),革兰氏阴性菌,选择性固氮培养基中菌落呈黄圆形黏稠状,固氮酶活性达34.63 nmol C2H2/(mL·h),最适生长条件为:盐度25‰、pH 7.5、温度33、接种量5.0%;菌株XT37为海洋芽孢杆菌(Bacillussp.),革兰氏阳性菌,选择性固氮培养基中菌落呈深黄色圆形褶皱,植酸酶活性达239.49μg/L,最适合生长条件为:盐度25‰、pH 6.7、温度28、接种量5.0%。溶血实验和急性毒性实验证明两株菌属实际无毒级别。[结论]两株菌具有高效的固氮解磷功能,以及抗高盐、强碱等环境的能力,安全无毒,因此有潜力应用于多功能混合微生物菌剂的研制。

    Abstract:

    [Objective] We isolated and purified a nitrogen-fixing bacterium AZ16 and a phosphate-solubilizing bacterium XT37 from the sediment of Halophila ovalis in Xisha, China. Furthermore, we optimized their culture conditions and explored their potential for solid microbial agents. [Methods] The strains were identified by morphological, biochemical and molecular characteristics. The nitrogenase and phosphate solubilizing activities were measured by acetylene reduction method and molybdenum antimony anti-coloring method. The fermentation conditions were optimized by single factor method and response surface method. Safety of the strains was identified by hemolysis test and acute toxicity experiment. [Results] Strain AZ16 is a gram-negative bacterium, belonging to Sagittula stellate, producing yellow, round, sticky colonies on the selective nitrogen fixation medium. The maximum nitrogenase activity was 34.63 nmol C2H2/(mL·h). The optimum growth conditions were as follows: salt content 2.5%, pH 7.5, fermentation temperature 33 inocula concentration 5.0%. Strain XT37 showed closest resemblance with Bacillus sp., gram-positive bacteria, developed yellow, round, plicated in the selective nitrogen fixation medium. And the phytase activity was 239.5 μg/L. The optimum conditions were as follows: salt content 2.5%, pH 6.7, fermentation temperature 28 inocula concentration 5.0%. Hemolysis tests and acute toxicity experiments proved that the two strains were in the actual non-toxic level. [Conclusion] Nitrogen-fixing bacterium AZ16 and phosphate-solubilizing bacterium XT37 can resist high salt concentration and can also survive under alkaline condition, hence these strains have the potential for multi-functional mixed microbial agents.

    参考文献
    [1] Wear RJ. Recent advances in research into seagrass restoration. Prepared for the Coastal Protection Branch, Department for Environment and Heritage. SARDI Aquatic Sciences Publication No. RD0410038-4. SARDI Aquatic Sciences. Adelaide, 2006.
    [2] Dyhrman ST, Ammerman JW, van Mooy BAS. Microbes and the marine phosphorus cycle. Oceanography, 2007, 20(2): 110-116.
    [3] Galloway JN, Schlesinger WH, Levy Ⅱ H, Michaels A, Schnoor JL. Nitrogen fixation: anthropogenic enhancement environmental response. Global Biogeochemical Cycles, 1995, 9(2): 235-252.
    [4] Hoffman BM, Lukoyanov D, Yang ZY, Dean DR, Seefeldt LC. Mechanism of nitrogen fixation by nitrogenase: the next stage. Chemical Reviews, 2014, 114(8): 4041-4062.
    [5] Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 1992, 257(5077): 1653-1659.
    [6] Mishra AK, Singh PK, Singh P, Singh A, Singh SS, Srivastava A, Srivastava AK, Sarma HK. Phylogeny and evolutionary genetics of Frankia strains based on 16S rRNA and nif D-K gene sequences. Journal of Basic Microbiology, 2015, 55(8): 1013-1020.
    [7] Braun ST, Proctor LM, Zani S, Mellon MT, Zehr JP. Molecular evidence for zooplankton-associated nitrogen-fixing anaerobes based on amplification of the nifH gene. FEMS Microbiology Ecology, 1999, 28(3): 273-279.
    [8] Dedysh SN, Ricke P, Liesack W. NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology, 2004, 150(5): 1301-1313.
    [9] Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV. Microbe-plant interactions: principles and mechanisms. Antonie van Leeuwenhoek, 2002, 81(1): 373-383.
    [10] Suarez C, Cardinale M, Ratering S, Steffens D, Jung S, Montoya AMZ, Geissler-Plaum R, Schnell S. Plant growth-promoting effects of Hartmannibacter diazotrophicus, on summer barley (Hordeum vulgare, L.) under salt stress. Applied Soil Ecology, 2015, 95: 23-30.
    [11] Egamberdiyeva D. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 2007, 36(2/3): 184-189.
    [12] Li R. Isolation of Plant Growth-Promoting Rhizobacteria of Cunninghamia lancceolata and Compound Microbial bacterial fertilizer Producing. Master's Thesis of Central South University of Forestry & Technology, 2012. (in Chinese) 李蓉. 杉木PGPR菌分离筛选及其微生物复合菌肥研制. 中南林业科技大学硕士学位论文, 2012.
    [13] 张晓君. 红树林促生菌(PGPB)菌剂优化及应用技术研究. 中南林业科技大学硕士学位论文, 2014.
    [14] Chen K, Li JS, Yang HT, Zhang XJ, Wei YL, Huang YJ. Phosphate solubilizing abilities of Bacillus megaterium strain P1 and its fermentation conditions. Soils and Fertilizers Sciences in China, 2010, (4): 73-76. (in Chinese) 陈凯, 李纪顺, 杨合同, 张新建, 魏艳丽, 黄玉杰. 巨大芽孢杆菌P1的解磷效果与发酵条件研究. 中国土壤与肥料, 2010, (4): 73-76.
    [15] Ling J, Dong JD, Zhang YY, Cai CH, Wang YS, Zhang S. Isolation and characterization of a N2-fixing bacterium from coral reef-seagrass ecosystem. Microbiology China, 2010, 37(7): 962-968. (in Chinese) 凌娟, 董俊德, 张燕英, 蔡创华, 王友绍, 张偲. 一株珊瑚礁-海草床复合生态系统固氮菌的分离与鉴定. 微生物学通报, 2010, 37(7): 962-968.
    [16] Zhang SP, Liao SA, Yu XY, Lu HW, Xian JA, Guo H, Wang AL, Xie J. Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus. Applied Microbiology and Biotechnology, 2015, 99(12): 5339-5350.
    [17] Dong JD, Wang YS, Zhang YY. Spatial and seasonal variations of Cyanobacteria and their nitrogen fixation rates in Sanya Bay, South China Sea. Scientia Marina, 2008, 72(2): 239-251.
    [18] 李丽娟. 一株产植酸酶菌株的选育. 华中农业大学硕士学位论文, 2007.
    [19] Dong XZ, Cai MY. Common Bacterial System Identification Manual. Beijing: Science Press, 2001. (in Chinese) 东秀珠, 蔡妙英. 常见细菌系统鉴定手册. 北京: 科学出版社, 2001.
    [20] Gonzalez JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. International Journal of Systematic Bacteriology, 1997, 47(3): 773-780.
    [21] 王国基. 根际促生专用菌肥研制及其对玉米促生作用的研究. 甘肃农业大学硕士学位论文, 2014.
    [22] Zhang LH, Liu YF, Hu QP. Isolation and identification of a Paenibacillus sp. producing nitrogenase activity from South China Sea. Marine Sciences, 2015, 39(3): 100-105. (in Chinese) 张丽红, 刘艳芳, 胡青平. 中国南海一株固氮类芽孢杆菌的筛选和分离鉴定. 海洋科学, 2015, 39(3): 100-105.
    [23] Konietzny U, Greiner R. Bacterial phytase: potential application, in vivo function and regulation of its synthesis. Brazilian Journal of Microbiology, 2004, 35(1/2): 12-18.
    [24] Huang DM, Li Q, Guan GQ, Zhang ZC, Qian JY, Song QC. Selection, identification and medium optimization of a phosphate-solubilizing bacterium. Biotechnology Bulletin, 2015, 31(2): 173-178. (in Chinese) 黄达明, 李倩, 管国强, 张志才, 钱静亚, 宋庆春. 一株解磷细菌的筛选、鉴定及其溶磷培养条件的优化. 生物技术通报, 2015, 31(2): 173-178.
    [25] Basak BB, Biswas DR. Co-inoculation of potassium solubilizing and nitrogen fixing bacteria on solubilization of waste mica and their effect on growth promotion and nutrient acquisition by a forage crop. Biology and Fertility of Soils, 2010, 46(6): 641-648.
    [26] Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Scientia Horticulturae, 2015, 193: 231-239.
    [27] Hou JQ, Li MX, Jia X, Xi BD, Wei ZM, Dang QL, Song CH, Zhao GP. Optimizing the phosphorus-solubilizing condition of multiple species inoculants. Journal of Agro-Environment Science, 2013, 32(2): 385-392. (in Chinese) 侯佳奇, 李鸣晓, 贾璇, 席北斗, 魏自民, 党秋玲, 宋彩红, 赵国鹏. 复合菌剂解无机磷条件优化研究. 农业环境科学学报, 2013, 32(2): 385-392.
    [28] Khoshayand F, Goodarzi S, Shahverdi AR, Khoshayand MR. Optimization of culture conditions for fermentation of soymilk using Lactobacillus casei by response surface methodology. Probiotics & Antimicrobial Proteins, 2011, 3(3/4): 159-167.
    [29] Pear LM, Callieri DA. Influence of calcium on fungal growth, hyphal morphology and citric acid production in Aspergillus niger. Folia Microbiologica, 1997, 42(6): 551-556.
    [30] Ren XH, Wang SL, Wen Y, Yang KQ. An update of calcium signaling in bacteria - A review. Acta Microbiologica Sinica, 2009, 49(12): 1564-1570. (in Chinese) 任晓慧, 王胜兰, 文莹, 杨克迁. 细菌中钙信号的作用. 微生物学报, 2009, 49(12): 1564-1570.
    [31] Han QY, Shi P. Progress in the study of seagrass ecology. Acta Ecologica Sinica, 2008, 28(11): 5561-5570. (in Chinese) 韩秋影, 施平. 海草生态学研究进展. 生态学报, 2008, 28(11): 5561-5570.
    [32] Walker DI, Kendrick GA, McComb AJ. Decline and recovery of seagrass ecosystems-the dynamics of change//Larkum A, Orth RJ, Duarte C. Seagrasses: Biology, Ecology, and Conservation. Dordrecht: Springer, 2007: 551-565.
    相似文献
引用本文

王聪,凌娟,张燕英,林丽云,曾思泉,周卫国,林显程,尹浩,董俊德. 海洋固氮菌和解磷菌的分离鉴定及发酵条件优化[J]. 微生物学报, 2018, 58(5): 817-829

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-06-12
  • 最后修改日期:2017-08-31
  • 在线发布日期: 2018-05-06
文章二维码