哈氏弧菌脂酰-ACP合成酶的体外功能
作者:
基金项目:

国家重点基础研究计划(973计划)(2015CB150600);国家自然科学基金(31671987,31471743);广东省自然科学基金(2014A030313455,2015A030312005)


Identification and characterization of acyl-acyl carrier protein synthetase of Vibrio harveyi in vitro
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]系统鉴定哈氏弧菌脂酰-ACP合成酶(Acyl-ACP synthetase,AasS)以不同链长游离脂肪酸和非脂肪链羧酸作为底物的体外催化反应。[方法]利用非变性蛋白质凝胶电泳和紫外分光光度计法从定性和定量两个方面分析了AasS的体外催化功能与活性。[结果]AasS能够催化不同链长直链的自由脂肪酸合成脂酰-ACP,其中以C6-C12作为底物时活性最高;以羟基脂肪酸作为底物的情况下,AasS催化C8-C14的羟基脂肪酸有较高的活性。非脂肪链羧酸类作为底物的反应中,20种蛋白质氨基酸、苯甲酸和水杨酸均可以作为AasS的底物,合成相应的脂酰-ACP。[结论]本研究系统地证明了哈氏弧菌脂酰-ACP合成酶(AasS)对不同底物的不同催化活性,为生物体内氨基酸代谢和菌黄素合成代谢的研究提供了可行性的分析依据。

    Abstract:

    [Objective] The aim of this study was to characterize Vibro harveyi acyl-ACP synthetase (AasS) with free fatty acids of different chain length and other carboxylic acids as substrates in vitro. [Methods] We analyzed the catalytic activity of AasS in vitro qualitatively and quantitatively by Urea-PAGE and UV spectrophotometry, respectively. [Results] AasS could catalyze the synthesis of fatty acyl-ACPs using straight chain free fatty acids with different chain length as substrates, and the enzymatic activity was much higher than C6-C12 fatty acids. In the case of 3-hydroxyl fatty acids, AasS showed higher activities to C8-C14 chain length as substrates. Furthermore, AasS could utilize such as 20 amino acids, benzoic acid and salicylic acid as substrates, and all formed corresponding acyl-ACPs. [Conclusion] Vibro harveyi acyl-ACP synthetase (AasS) catalyzed different substrates with different activities, and this finding could provide a reference for analyzing the metabolism of amino acids.

    参考文献
    [1] White SW, Zheng J, Zhang YM, Rock CO. The structural biology of type Ⅱ fatty acid biosynthesis. Annual Review of Biochemistry, 2005, 74: 791-831.
    [2] Smith S. Architectural options for a fatty acid synthase. Science, 2006, 311(5765): 1251-1252.
    [3] Lu YJ, Zhang YM, Rock CO. Product diversity and regulation of type Ⅱ fatty acid synthases. Biochemistry and Cell Biology, 2004, 82(1): 145-155.
    [4] Feng SX, Zhu L, Luo B, Sun YR, Wang HH. Reconstitution of Escherichia coli fatty acid biosynthesis reaction in vitro. Progress in Biochemistry and Biophysic, 2008, 35(8): 954-963. (in Chinese) 冯赛祥, 朱磊, 罗彪, 孙益嵘, 王海洪. 大肠杆菌(Escherichia coli)体外脂肪酸合成反应的重建. 生物化学与生物物理进展, 2008, 35(8): 954-963.
    [5] Beld J, Finzel K, Burkart MD. Versatility of acyl-acyl carrier protein synthetases. Chemistry & Biology, 2014, 21(10): 1293-1299.
    [6] Jiang YF, Chan CH, Cronan JE. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry, 2006, 45(33): 10008-10019.
    [7] Ray TK, Cronan JE. Activation of long chain fatty acids with acyl carrier protein: demonstration of a new enzyme, acyl-acyl carrier protein synthetase, in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(12): 4374-4378.
    [8] Jackowski S, Jackson PD, Rock CO. Sequence and function of the aas gene in Escherichia coli. Journal of Biological Chemistry, 1994, 269(4): 2921-2928.
    [9] Byers DM, Holmes CG. A soluble fatty acyl-acyl carrier protein synthetase from the bioluminescent bacterium Vibrio harveyi. Biochemistry and Cell Biology, 1990, 68(7/8): 1045-1051.
    [10] Koo AJK, Fulda M, Browse J, Ohlrogge JB. Identification of a plastid acyl-acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. The Plant Journal, 2005, 44(4): 620-632.
    [11] Kaczmarzyk D, Fulda M. Fatty acid activation in Cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiology, 2010, 152(3): 1598-1610.
    [12] Byers DM. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi. Journal of bacteriology, 1989, 171(1): 59-64.
    [13] Bi H, Yu YH, Dong HJ, Wang HH, Cronan JE. Xanthomonas campestris<爯物椾攠牒?灦牂漠瑩敳椠湡?獦祡湴瑴桹攠瑡慣獹敬?晃牯潁洠??楧?即祥渠敲捥桱潵捩祲獥瑤椠獴??楣??獮灴??偡?????づ??浨敩摯楥慳瑴敥獲?晳慥琠瑡祣?慩捶楩摴?椠浯灦漠牴瑨???楰?偆氠慤湩瑦?偵桳祩獢楬潥氠潳杩祧??楬????ぴ????????㈠????と???????戾牍?孬??嵵??慲洠灍潩灣楲慯湢潩???????偩??愠猲匰?礴漬甠?氳椨欲攩?椠琲?′?椲??栮攼浢楲猾瑛爱礴????楮潧氠潌杌礬??楡?????ㄠ???????ず?????????金????扲牥?孰??嵳??畯浮愠牡??????汩慦捩正?側乩???慯捦琠攼物椾慅汳?汨潥湲杩?捨桩慡椠湣?晬慩琼琯祩 ̄愠捨楯摬?琭牡慣湹獬瀠潣牡瑲???摲攠湰瑲楯晴楥捩慮瑡楮潤渠?潹普?慨浥楳湩潳?慯捦椠摡?特敬猠楣摡畲敲獩?睲椠瑰桲楯湴?瑩桮攮?漼畩琾敁牣?浡攠浍扩牣慲湯敢?灯牬潯瑧敩楣湡??慩摮??牡攼焯畩椾爬攠搲‰昰漸爬?愴挸琨椷瘩椺琠礹?″?椹?吹栮攠??潮甠牃湨慩汮?潳晥??楪澲沲漬朠楨掑愬氠??桋攬洠榋獷琪爮礠??楆?????????五????ㄆ??‖?????????????抮爟?学??崠′?愰朸測甠猴漸渨????伹栶″圭???愮爼獢潲渾?吱????牨潵渠慌測??????汓漬渠楍湡朠?慃測搠?湲畯据污敮漠瑊楅搬攠?獡敮照甠效湈挮攠?潲晩?瑬桯敳??椠?晥慳扩???楮??朠敯湦攠?敩渾捐潳摥極湤杯?浯慮污潳渠祡汥?捵潧敩湮穯祳浡攼???愠捐祁汏?挠慩牳爠楤敵牥?灴牯漠瑆敡楢湖?琠牡愠湴獲慩捣祬汯慳獡敮?潲晥??楳??獮捴栠敥牮楯捹桬椭慡?捹潬氠楣??楲????楰????卩??敲瑥瑤敵牣獴??楥???????????????????休??????扡牮?嬠至?嵥??慴湨来?奡??娼愯物稾礬挠欲椰?匰椬攠欵????场愠氶琸漹渭?????乢潲爾牛椱猶??????潌愬渠权?呥呮???界氬琠楌灵汯攠??愠摆??慧挠祓汘??潌??猠祊湓琬栠敗瑡慮獧攠獓?挬漠湃瑲牯楮扡畮琠敊?琬漠?摡楮晧映效版攮渠瑆極慮汣?晩慯瑮瑳礠?慦挠楴摨?搠攼杩爾慃摬慯瑳楴潲湩?慩湵摭?癡楣牥畴汯敢湵捴敹?楩湣??業?倯獩放甠摆潡浢潆渠慡獮?愠敆牡畢杚椠湰潲獯慴??楮????椠?偮?潡却?佲湡整??椠????べㄠち?????ど???敮???????戠爼?嬾自?嵃??楩慣湲杯?奩????潹爼术慩渾??椲猰猰?刬????愱洱瀹戮攼汢汲 ̄?圱???案慥渠??????爠潊湅愬渠??????砬瀠牙敡獮獧椠潆測?潈晥??楑?嘠楊扩牡楮潧?桂慌爬瘠敂祡楩??楑??慘捵礠汙???偄?獮祧渠瑚桘攬琠慔獡敮?愠汊汌漬眠獚?敡普晧椠捌楈攮渠琼?放湘瑡牮祴?潯晭?敮硡潳朠散湡潭異獥?晴慲瑩瑳礼?慩挾椠摤獩?楦湵瑳潩?瑬桥攠??楣??獲挠桩敳爠椳挭桨楹慤?捯潸汹楢??楺??晣愠瑡瑣祩?愠捡楮摤?慩湳搠?汳楳灯楣摩?慴?獤礠湷瑩桴敨琠楸捡?灴慨瑯桭睯慮祡獤???楢??楳潹据桴敨浥楳獩瑳爬礠??楬????ち?ど????????????????? activity, and systemic invasion. Molecular Plant-Microbe Interactions, 2011, 24(8): 948-957.
    [18] Starr MP, Jenkins CL, Bussey LB, Andrewes AG. Chemotaxonomic significance of the xanthomonadins, novel brominated aryl-polyene pigments produced by bacteria of the genus Xanthomonas. Archives of Microbiology, 1977, 113(1/2): 1-9.
    [19] Zhou L, Huang TW, Wang JY, Sun S, Chen G, Poplawsky A, He YW. The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis. Molecular Plant-Microbe Interactions, 2013, 26(10): 1239-1248.
    [20] von Berlepsch S, Kunz HH, Brodesser S, Fink P, Marin K, Flügge UI, Gierth M. The acyl-acyl ca
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李开怀,张超,余永红,郭巧巧,廖裕玲,马金成,王海洪. 哈氏弧菌脂酰-ACP合成酶的体外功能[J]. 微生物学报, 2018, 58(5): 851-861

复制
分享
文章指标
  • 点击次数:791
  • 下载次数: 1487
  • HTML阅读次数: 492
  • 引用次数: 0
历史
  • 收稿日期:2017-07-02
  • 最后修改日期:2017-08-26
  • 在线发布日期: 2018-05-06
文章二维码