沙门菌效应蛋白对宿主细胞的影响及分子机制
作者:
基金项目:

科技部“973计划”(2015CB554203)


Roles of Salmonella effectors in manipulating host cell function
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    沙门菌(Salmonella spp.)作为胞内病原菌,通过侵入宿主细胞,导致人类和多种动物感染疾病。在与宿主细胞的长期斗争中,沙门菌进化出多种机制来逃避宿主的监视与防御,从而完成侵入并生存增殖的过程。尽管一些效应蛋白靶向的宿主因子已经被发现,但大多数效应蛋白的靶点尚且未知。本文综述了沙门菌效应蛋白对宿主细胞生理活动的影响,包括对细胞骨架的变化、炎症应答、胞膜修饰和滤泡的胞内移动现象及其分子机制进行阐述。

    Abstract:

    Salmonella is an intracellular bacterial pathogen that infects both humans and animals. After a long time of hard struggle, Salmonella has evolved numerous mechanisms to evade host immune defenses, and finally accomplished the process of invasion and replication. Although some of the host targets manipulated by Salmonella effectors have been identified, the interaction between Salmonella and host cells remains unclear. This review summarizes the functions and mechanisms of Salmonella effectors in regulating the host cell signaling pathways, including cytoskeletal changes, inflammatory responses, membrane modifications and vacuolar trafficking.

    参考文献
    [1] Zhou D, Mooseker MS, Galan JE. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18):10176-10181.
    [2] Diepold A, Armitage JP. Type Ⅲ secretion systems:the bacterial flagellum and the injectisome. Philosophical Transactions of the Royal Society B:Biological Sciences, 2015, 370(1679):20150020.
    [3] Hansen-Wester I, Hensel M. Salmonella pathogenicity islands encoding type Ⅲ secretion systems. Microbes and Infection, 2001, 3(7):549-559.
    [4] LaRock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nature Reviews Microbiology, 2015, 13(4):191-205.
    [5] Shea JE, Hensel M, Gleeson C, Holden DW. Identification of a virulence locus encoding a second type Ⅲ secretion system in Salmonella typhimurium. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(6):2593-2597.
    [6] Freeman JA, Ohl ME, Miller SI. The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infection and Immunity, 2003, 71(1):418-427.
    [7] Galán JE, Collmer A. Type Ⅲ secretion machines:bacterial devices for protein delivery into host cells. Science, 1999, 284(5418):1322-1328.
    [8] Chen LM, Hobbie S, Galan JE. Requirement of CDC42 for Salmonella-induced cytoskeletal and nuclear responses. Science, 1996, 274(5295):2115-2118.
    [9] Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galán JE. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell, 1998, 93(5):815-826.
    [10] Zhou DG, Chen LM, Hernandez L, Shears SB, Galán JE. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Molecular Microbiology, 2001, 39(2):248-259.
    [11] Jolly C, Winfree S, Hansen B, Steele-Mortimer O. The Annexin A2/p11 complex is required for efficient invasion of Salmonella typhimurium in epithelial cells. Cellular Microbiology, 2014, 16(1):64-77.
    [12] Tahoun A, Mahajan S, Paxton E, Malterer G, Donaldson DS, Wang D, Tan A, Gillespie TL, O'Shea M, Roe AJ, Shaw DJ, Gally DL, Lengeling A, Mabbott NA, Haas J, Mahajan A. Salmonella transforms follicle-associated epithelial cells into M cells to promote intestinal invasion. Cell Host & Microbe, 2012, 12(5):645-656.
    [13] Brooks AB, Humphreys D, Singh V, Davidson AC, Arden SD, Buss F, Koronakis V. MYO6 is targeted by Salmonella virulence effectors to trigger PI3-kinase signaling and pathogen invasion into host cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15):3915-3920.
    [14] Humphreys D, Davidson A, Hume PJ, Koronakis V. Salmonella virulence effector SopE and Host GEF ARNO cooperate to recruit and activate WAVE to trigger bacterial invasion. Cell Host & Microbe, 2012, 11(2):129-139.
    [15] Myeni SK, Zhou DG. The C terminus of SipC binds and bundles F-actin to promote Salmonella invasion. The Journal of Biological Chemistry, 2010, 285(18):13357-13363.
    [16] Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biology, 2007, 5(10):2177-2189.
    [17] Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimurium virulence. Cell, 2011, 144(5):675-688.
    [18] Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A. Innate immune detection of the type Ⅲ secretion apparatus through the NLRC4 inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(7):3076-3080.
    [19] Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5):2396-2401.
    [20] Müller AJ, Hoffmann C, Galle M, van den Broeke A, Heikenwalder M, Falter L, Misselwitz B, Kremer M, Beyaert R, Hardt WD. The S. typhimurium effector SopE induces caspase-1 activation in stromal cells to initiate gut inflammation. Cell Host & Microbe, 2009, 6(2):125-136.
    [21] Srikanth CV, Wall DM, Maldonado-Contreras A, Shi HN, Zhou DG, Demma Z, Mumy KL, McCormick BA. Salmonella pathogenesis and processing of secreted effectors by caspase-3. Science, 2010, 330(6002):390-393.
    [22] Humphreys D, Hume PJ, Koronakis V. The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host & Microbe, 2009, 5(3):225-233.
    [23] Keszei AFA, Tang XJ, McCormick C, Zeqiraj E, Rohde JR, Tyers M, Sicheri F. Structure of an SspH1-PKN1 complex reveals the basis for host substrate recognition and mechanism of activation for a bacterial E3 ubiquitin ligase. Molecular and Cellular Biology, 2014, 34(3):362-373.
    [24] Haneda T, Ishii Y, Shimizu H, Ohshima K, Iida N, Danbara H, Okada N. Salmonella type Ⅲ effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. Cellular Microbiology, 2012, 14(4):485-499.
    [25] Cardenal-Muñoz E, Gutiérrez G, Ramos-Morales F. Global impact of Salmonella type Ⅲ secretion effector SteA on host cells. Biochemical and Biophysical Research Communications, 2014, 449(4):419-424.
    [26] Rolhion N, Furniss RCD, Grabe G, Ryan A, Liu M, Matthews SA, Holden DW. Inhibition of nuclear transport of NF-κB p65 by the Salmonella type Ⅲ secretion system effector SpvD. PLoS Pathogens, 2016, 12(5):e1005653.
    [27] Sun H, Kamanova J, Lara-Tejero M, Galán JE. A family of Salmonella type Ⅲ secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis. PLoS Pathogens, 2016, 12(3):e1005484.
    [28] Bayer-Santos E, Durkin CH, Rigano LA, Kupz A, Alix E, Cerny O, Jennings E, Liu M, Ryan AS, Lapaque N, Kaufmann SHE, Holden DW. The Salmonella effector SteD mediates MARCH8-dependent ubiquitination of MHC Ⅱ molecules and inhibits T cell activation. Cell Host & Microbe, 2016, 20(5):584-595.
    [29] LaRock DL, Brzovic PS, Levin I, Blanc MP, Miller SI. A Salmonella typhimurium-translocated glycerophospholipid:cholesterol acyltransferase promotes virulence by binding to the RhoA protein switch regions. The Journal of Biological Chemistry, 2012, 287(35):29654-29663.
    [30] Arena ET, Auweter SD, Antunes LCM, Vogl AW, Han J, Guttman JA, Croxen MA, Menendez A, Covey SD, Borchers CH, Finlay BB. The deubiquitinase activity of the Salmonella pathogenicity island 2 effector, SseL, prevents accumulation of cellular lipid droplets. Infection and Immunity, 2011, 79(11):4392-4400.
    [31] Braun V, Wong A, Landekic M, Hong WJ, Grinstein S, Brumell JH. Sorting nexin 3(SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cellular Microbiology, 2010, 12(9):1352-1367.
    [32] Ohlson MB, Huang ZW, Alto NM, Blanc MP, Dixon JE, Chai JJ, Miller SI. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host & Microbe, 2008, 4(5):434-446.
    [33] Domingues L, Holden DW, Mota LJ. The Salmonella effector SteA contributes to the control of membrane dynamics of Salmonella-containing vacuoles. Infection and Immunity, 2014, 82(7):2923-2934.
    [34] Domingues L, Ismail A, Charro N, Rodríguez-Escudero I, Holden DW, Molina M, Cid VJ, Mota LJ. The Salmonella effector SteA binds phosphatidylinositol 4-phosphate for subcellular targeting within host cells. Cellular Microbiology, 2016, 18(7):949-969.
    [35] Yu XJ, Liu M, Holden DW. Salmonella effectors SseF and SseG Interact with mammalian protein ACBD3(GCP60) to anchor Salmonella-containing vacuoles at the golgi network. mBio, 2016, 7(4):e00474-16.
    [36] Knodler LA, Steele-Mortimer O. The Salmonella effector PipB2 affects late endosome/lysosome distribution to mediate Sif extension. Molecular Biology of the Cell, 2005, 16(9):4108-4123.
    [37] Schroeder N, Henry T, de Chastellier C, Zhao WD, Guilhon AA, Gorvel JP, Méresse S. The virulence protein SopD2 regulates membrane dynamics of Salmonella-containing vacuoles. PLoS Pathogens, 2010, 6(7):e1001002.
    [38] D'Costa VM, Braun V, Landekic M, Shi R, Proteau A, McDonald L, Cygler M, Grinstein S, Brumell JH. Salmonella disrupts host endocytic trafficking by SopD2-mediated inhibition of Rab7. Cell Reports, 2015, 12(9):1508-1518.
    [39] Spanò S, Gao X, Hannemann S, Lara-Tejero M, Galán JE. A bacterial pathogen targets a host rab-family GTPase defense pathway with a GAP. Cell Host & Microbe, 2016, 19(2):216-226.
    [40] Agbor TA, McCormick BA. Salmonella effectors:important players modulating host cell function during infection. Cellular Microbiology, 2011, 13(12):1858-1869.
    [41] Sang Y, Ren J, Qin R, Liu ST, Cui ZL, Cheng S, Liu XY, Lu J, Tao J, Yao YF. Acetylation regulating protein stability and DNA-binding ability of HilD, thus modulating Salmonella typhimurium virulence. The Journal of Infectious Diseases, 2017, 216(8):1018-1026.
    [42] Wan BS, Zhang QF, Ni JJ, Li SX, Wen DH, Li J, Xiao HH, He P, Ou HY, Tao J, Teng QH, Lu J, Wu WJ, Yao YF. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli virulence by secreting catalase against host reactive oxygen species (ROS). PLoS Pathogens, 2017, 13(3):e1006246.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王佐强,姚玉峰. 沙门菌效应蛋白对宿主细胞的影响及分子机制[J]. 微生物学报, 2018, 58(7): 1158-1166

复制
分享
文章指标
  • 点击次数:819
  • 下载次数: 2189
  • HTML阅读次数: 1110
  • 引用次数: 0
历史
  • 收稿日期:2017-10-12
  • 最后修改日期:2017-12-22
  • 在线发布日期: 2018-07-05
文章二维码