ccpA基因对蜡样芽胞杆菌氨肽酶生产的影响
作者:

Effect of ccpA gene on the production of aminopeptidase in Bacillus cereus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]构建蜡样芽胞杆菌(Bacillus cereusccpA缺失菌株,并初步探索ccpA基因对其碳代谢及氨肽酶生产的影响。[方法]利用温敏型质粒pKSV7构建蜡样芽胞杆菌CZ ccpA基因缺失突变株CZΔccpA,通过回补菌株对敲除株表型进行验证;不同碳源发酵对比菌株碳代谢的变化,进行氨肽酶发酵优化。[结果]成功构建ccpA缺失菌株CZΔccpA与回补菌株CZ1,三株菌在LB培养基中生长无差异;在柠檬酸钠以及甘露低聚糖为碳源时,菌株的代谢产生明显变化;以D-木糖为单一碳源时,氨肽酶的产量提高48.25%。[结论]CZccpA基因对柠檬酸钠、甘露低聚糖、D-木糖为单一碳源时的代谢可能具有调控作用,ccpA基因缺失可以提高蜡样芽胞杆菌CZ的氨肽酶产量。

    Abstract:

    [Objective] We constructed Bacillus cereus CZ ccpA deletion strains to explore its effect on carbon metabolism and aminopeptidase production. [Methods] Through homologous recombination mediated by the temperature-sensitive plasmid pKSV7, we acquired the mutant strain CZΔccpA successfully. We also constructed ccpA gene revertant strain CZ1 for phenotypic validation of knockout strains. We compared the metabolic differences of three strains cultured with different carbon source and optimized aminopeptidase fermentation conditions. [Results] The ccpA deletion strain CZΔccpA and the revertant strain CZ1 were successfully constructed. There was no difference in the growth of the three strains in LB medium. When fermented with sodium citrate or mannan oligosaccharides as a single carbon source, the CZΔccpA showed significant metabolic differences from the CZ and CZ1. Besides, the activity of aminopeptidase increased by 48.25 percent when D-xylose was used as the sole carbon source. [Conclusion] Bacillus cereus CZ ccpA gene affects the production of aminopeptidase by regulating the carbon metabolism process and we can raise aminopeptidase production by ccpA gene knockout.

    参考文献
    [1] Moreno MS, Schneider BL, Maile RR, Weyler W, Saier Jr MH. Catabolite repression mediated by the CcpA protein in Bacillus subtilis:novel modes of regulation revealed by whole-genome analyses. Molecular Microbiology, 2001, 39(5):1366-1381.
    [2] Wacker I, Ludwig H, Reif I, Blencke HM, Detsch C, Stülke J. The regulatory link between carbon and nitrogen metabolism in bacillus subtilis:regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology, 2003, 149(Pt 10):3001-3009.
    [3] Görke B, Stülke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 6(8):613-624.
    [4] Shivers RP, Dineen SS, Sonenshein AL. Positive regulation of Bacillus subtilis ackA by CodY and CcpA:establishing a potential hierarchy in carbon flow. Molecular Microbiology, 2006, 62(3):811-822.
    [5] Yang Y, Zhang L, Huang H, Yang C, Yang S, Gu Y, Jiang W. A flexible binding site architecture provides new insights into CcpA global regulation in Gram-positive bacteria. mBio, 2017, 8(1):e02004-16.
    [6] Turinsky AJ, Moir-Blais TR, Grundy FJ, Henkin TM. Bacillus subtilis ccpA gene mutants specifically defective in activation of acetoin biosynthesis. Journal of Bacteriology, 2000, 182(19):5611-5614.
    [7] Fu J. Research progress of exopeptidases in foods. Food Science, 2013, 34(7):349-354. (in Chinese) 付静. 食品外肽酶的研究进展. 食品科学, 2013, 34(7):349-354.
    [8] Gao YD. Types of leucine aminopeptidase and clinical application. International Journal of Laboratory Medicine, 2010, 31(12):1408-1410. (in Chinese) 高应东. 亮氨酸氨肽酶的种类及临床应用. 国际检验医学杂志, 2010, 31(12):1408-1410.
    [9] Waditee-Sirisattha R, Hattori A, Shibato J, Rakwal R, Sirisattha S, Takabe T, Tsujimoto M. Role of the Arabidopsis leucine aminopeptidase 2. Plant Signaling & Behavior, 2011, 6(10):1581-1583.
    [10] 张金虎. 蜡状芽孢杆菌CZ发酵生产氨肽酶的过程调控. 华南理工大学硕士学位论文, 2013.
    [11] Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nature Protocols, 2007, 2(4):924-932.
    [12] Turgeon N, Laflamme C, Ho J, Duchaine C. Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579. Journal of Microbiological Methods, 2006, 67(3):543-548.
    [13] Peng D, Luo Y, Guo S, Zeng H, Ju S, Yu Z, Sun M. Elaboration of an electroporation protocol for large plasmids and wild-type strains of Bacillus thuringiensis. Journal of Applied Microbiology, 2009, 106(6):1849-1858.
    [14] Lin LL, Hsu WH, Wu CP, Chi MC, Chou WM, Hu HY. A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles, 2004, 8(1):79-87.
    [15] Ying M, Ban R. Knockout of the ccpA gene in Bacillus subtilis and influence on riboflavin production. Acta Microbiologica Sinica, 2006, 46(1):23-27. (in Chinese) 应明, 班睿. 枯草芽孢杆菌ccpA基因敲除及对其核黄素产量的影响. 微生物学报, 2006, 46(1):23-27.
    [16] Poncet S, Milohanic E, Mazé A, Nait Abdallah J, Aké F, Larribe M, Deghmane AE, Taha MK, Dozot M, De Bolle X, Letesson JJ, Deutscher J. Correlations between carbon metabolism and virulence in bacteria. Contributions to Microbiology, 2009, 16:88-102.
    [17] Kim HJ, Roux A, Sonenshein AL. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Molecular Microbiology, 2002, 45(1):179-190.
    [18] Asai K, Baik SH, Kasahara Y, Moriya S, Ogasawara N. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology, 2000, 146(Pt 2):263-271.
    [19] van der Voort M, Kuipers OP, Buist G, de vos WM, Abee T. Assessment of CcpA-mediated catabolite control of gene expression in Bacillus cereus ATCC 14579. BMC Microbiology, 2008, 8:62.
    [20] Schmiedel D, Hillen W. Contributions of XylR, CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Molecular and General Genetics MGG, 1996, 250(3):259-266.
    [21] Barry CM, O'Cuinn G, Harrington D, O'Callaghan DM, Fitzgerald RJ. Debittering of a tryptic digest of bovine β-casein using porcine kidney general aminopeptidase and X-prolydipeptidyl aminopeptidase from Lactococcus lactis subsp. cremoris AM2. Journal of Food Science, 2000, 65(7):1145-1150.
    [22] Wei YJ. Optimizations of the fermentative condition and application of aminopeptidase by Bacillus subtilis Zj016. Master Dissertation of Jiangnan University, 2008. (in Chinese) 魏亚娟. 细菌氨肽酶的产酶条件优化及应用研究. 江南大学硕士学位论文, 2008.
    [23] Lorca GL, Chung YJ, Barabote RD, Weyler W, Schilling CH, Saier MH Jr. Catabolite repression and activation in Bacillus subtilis:dependency on CcpA, HPr, and HprK. Journal of Bacteriology, 2005, 187(22):7826-7839.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李雪晴,张嘉仕,崔堂兵. ccpA基因对蜡样芽胞杆菌氨肽酶生产的影响[J]. 微生物学报, 2018, 58(7): 1191-1201

复制
分享
文章指标
  • 点击次数:1088
  • 下载次数: 1307
  • HTML阅读次数: 1067
  • 引用次数: 0
历史
  • 收稿日期:2017-07-15
  • 最后修改日期:2017-12-24
  • 在线发布日期: 2018-07-05
文章二维码