创伤弧菌TF3全基因组包含的CRISPR-Cas系统及MGIVvuTF3基因岛分析
作者:
基金项目:

国家自然科学基金(31370149);广东省渔业科技攻关项目(20170228-9-3)


Analysis of a CRISPR-Cas system and a genomic island, MGIVvuTF3, in complete genome of Vibrio vulnificus TF3
Author:
  • Long Yun

    Long Yun

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Science, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Peng Luo

    Peng Luo

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Yushun Tian

    Yushun Tian

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Science, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Xiongqi Ding

    Xiongqi Ding

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China;University of Chinese Academy of Science, Beijing 101408, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • Chaoqun Hu

    Chaoqun Hu

    CAS Key Laboratory of Tropical Marine Bio-resources and Ecology(LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology(LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong Province, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]分析创伤弧菌(Vibrio vulnificus)全基因组框架序列,挖掘感兴趣的遗传位点,探索其是否具有CRISPR系统及其特征。[方法]在病虾体内分离获得了一株创伤弧菌TF3,通过Illumina Miseq测序得到基因组框架序列。经注释分析发现其基因组中存在一个CRISPR-Cas系统,命名为CRISPR-CasTF3,进一步分析发现CRISPR-CasTF3位于一个基因岛上,将该基因岛命名为MGIVvuTF3。对CRISPR-CasTF3及MGIVvuTF3的特征和来源进行了分析。[结果]CRISPR-CasTF3属于与大肠杆菌类似的Ι-E型CRISPR-Cas系统,CRISPR-CasTF3包括8个cas基因,其排列为cas3-cas8e-cse2-cas6-cas7-cas5-cas1-cas2;具有50个重复序列,每二个重复序列间为一个Spacer序列。MGIVvuTF3具有attL和attR序列,含有位点特异性整合、剪切、转移相关的基因。MGIVvuTF3与霍乱弧菌O395基因组中的一个基因岛MGIVch0395具较高相似性,二者最显著的差别在于Spacer序列完全不同,以及各有几个非保守的预测基因。[结论]MGIVvuTF3及CRISPR-CasTF3极有可能通过基因水平转移获得,并且CRISPR-CasTF3系统可以借助MGIVvuTF3实现水平转移。

    Abstract:

    [Objective] In order to dig interesting genetic regions and explore whether CRISPR-Cas systems exist, the draft genome of Vibrio vulnificus TF3 was analyzed. [Methods] We isolated V. vulnificus strain TF3 from the diseased shrimp Litopenaeus vannamei, and then obtained its genome sequence by Illumina Miseq sequencing. The genomic annotation showed that there was a CRISPR-Cas system in V. vulnificus TF3, named CRISPR-CasTF3. After further analysis, we found that the CRISPR-CasTF3 located in a genomic island, named MGIVvuTF3. The characteristics and sources of CRISPR-CasTF3 and MGIVvuTF3 were analyzed using bioinformatic methods. [Results] We found the CRISPR-CasTF3 belonged to type I-E CRISPR-Cas system similar to that of Escherichia coli. The CRISPR-CasTF3 contained eight cas genes with the order, cas3-cas8e-cse2-cas6-cas7-cas5-cas1-cas2. CRISPR-CasTF3 had 50 repeats sequences separated by 49 spacer sequences. MGIVvuTF3 featured attL/attR sequences, and key genes participating in site-specific integration, excision, and transfer, and thus it manifested that MGIVvuTF3 represents a genomic island. MGIVvuTF3 had highly similarity to a genomic island, MGIVch0395, found in V. cholerae O395. However, the two genomic islands also had two distinct differences, namely, they had completely different spacer sequences and each of them had several particular predicted genes. [Conclusion] MGIVvuTF3 harboring CRISPR-CasTF3is most likely obtained through horizontal gene transfer, and therefore the CRISPR-CasTF3 system may transfer horizontally by means of MGIVvuTF3.

    参考文献
    [1] 王传得. 致病性弧菌MPCR-DHPLC检测和分型方法的建立. 福建农林大学硕士学位论文, 2009.
    [2] 潘军航. 浙江沿海创伤弧菌的分布特征及其种群结构研究. 浙江大学博士学位论文, 2015.
    [3] Yuan M, Yuan YM, Chen HB, Luo JY, Yu MH. Plasmid diversity and multilocus sequencing typing of Vibrio vulnificus isolated from the environment of Nanshan District, Shenzhen City. Practical Preventive Medicine, 2016, 23(10):1167-1169, 1175. (in Chinese) 袁梦, 袁月明, 陈宏彬, 罗锦雁, 俞慕华. 深圳地区环境中创伤弧菌携带质粒分析及多位点序列遗传分型. 实用预防医学, 2016, 23(10):1167-1169, 1175.
    [4] Horvath P, Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962):167-170.
    [5] Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 1987, 169(12):5429-5433.
    [6] Jansen R, van Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6):1565-1575.
    [7] Sorek R, Kunin V, Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology, 2008, 6(3):181-186.
    [8] Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R. Characterizing leader sequences of CRISPR loci. Bioinformatics, 2016, 32(17):i576-i585.
    [9] Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 2015, 13(11):722-736.
    [10] Swarts DC, Mosterd C, Van Passel MWJ, Brouns SJJ. CRISPR interference directs strand specific spacer acquisition. PLoS One, 2012, 7(4):e35888.
    [11] Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system:biology, mechanisms and applications. Biochimie, 2015, 117:119-128.
    [12] Garneau JE, Dupuis MÈ, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadán AH, Moineau S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320):67-71.
    [13] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder:a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Research, 2007, 35(S2):W52-W57.
    [14] Benson G. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Research, 1999, 27(2):573-580.
    [15] Abbott JC, Aanensen DM, Rutherford K, Butcher S, Spratt BG. WebACT-an online companion for the Artemis comparison tool. Bioinformatics, 2005, 21(18):3665-3666.
    [16] Haft DH, Selengut J, Mongodin EF, Nelson KE. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Computational Biology, 2005, 1(6):e60.
    [17] Feng H, Dong G, Yong B, Li W. Function and organization of CRISPR-Cas systems and application in biotechnology. Journal of Sichuan Normal University (Natural Science), 2014, 37(2):268-281. (in Chinese) 冯红, 董阁, 雍彬, 李维. 原核CRISPR-Cas系统的结构功能及应用. 四川师范大学学报(自然科学版), 2014, 37(2):268-281.
    [18] Silas S, Mohr G, Sidote DJ, Markham LM, Sanchez-Amat A, Bhaya D, Lambowitz AM, Fire AZ. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science, 2016, 351(6276):aad4234.
    [19] Daccord A, Ceccarelli D, Rodrigue S, Burrus V. Comparative analysis of mobilizable genomic islands. Journal of Bacteriology, 2013, 195(3):606-614.
    [20] Makarova KS, Aravind L, Wolf YI, Koonin EV. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biology Direct, 2011, 6:38.
    [21] Ledford H. Five big mysteries about CRISPR's origins. Nature, 2017, 541(7637):280-282.
    [22] Chakraborty S, Snijders AP, Chakravorty R, Ahmed M, Tarek AM, Hossain MA. Comparative network clustering of direct repeats (DRs) and cas genes confirms the possibility of the horizontal transfer of CRISPR locus among bacteria. Molecular Phylogenetics and Evolution, 2010, 56(3):878-887.
    [23] Portillo MC, Gonzalez JM. CRISPR elements in the thermococcales:evidence for associated horizontal gene transfer in Pyrococcus furiosus. Journal of Applied Genetics, 2009, 50(4):421-430.
    [24] Ge CY, Lu HX, Qu DF, Zhu JL, Yuan DX, Feng LF. Comparative analysis of clustered regularly interspaced short palindromic repeats (CRISPR) in the genomes of Vibrio parahaemolyticus group. Genomics and Applied Biology, 2015, 34(8):1712-1722. (in Chinese) 葛彩云, 陆海霞, 曲道峰, 朱军莉, 袁冬霞, 冯立芳. 副溶血性弧菌群中规律成簇间隔短回文重复序列的比较分析. 基因组学与应用生物学, 2015, 34(8):1712-1722.
    [25] Chakraborty S, Waise TMZ, Hassan F, Kabir Y, Smith MA, Arif M. Assessment of the evolutionary origin and possibility of CRISPR-Cas (CASS) mediated RNA interference pathway in Vibrio cholerae O395. Silico Biology, 2009, 9(4):245-254.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

云龙,罗鹏,田雨顺,丁雄祺,胡超群. 创伤弧菌TF3全基因组包含的CRISPR-Cas系统及MGIVvuTF3基因岛分析[J]. 微生物学报, 2018, 58(7): 1266-1273

复制
分享
文章指标
  • 点击次数:831
  • 下载次数: 1280
  • HTML阅读次数: 818
  • 引用次数: 0
历史
  • 收稿日期:2017-08-15
  • 最后修改日期:2017-11-21
  • 在线发布日期: 2018-07-05
文章二维码