禽坦布苏病毒诱导的宿主免疫应答
作者:
基金项目:

国家“973”计划(2015CB910502);福建省自然科学基金(2016J01090);福建农林大学杰出青年科研人才计划(xjq201605)


Host immune response induced by avian Tembusu virus infection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    禽坦布苏病毒(Avian Tembusu virus,ATMUV)是近年来在我国新发现的一种病毒,可感染多种蛋禽,感染动物临床特征为采食量下降,产蛋量骤减,甚至停产,感染后期呈神经症状,如腿和翅膀麻痹、共济失调等。ATMUV在我国多个省市地区流行,给我国甚至世界养禽业带来严重影响。固有免疫是机体抵抗病原感染的第一道重要防线,是机体与生俱来的抵御病原微生物的能力。适应性免疫是机体免疫系统在抗原刺激下产生特异性抗体及免疫效应细胞的过程,以建立针对某种病原微生物的抵抗力,是机体免疫系统的重要部分。本文将从禽坦布苏病毒诱导宿主固有免疫应答和适应性免疫应答两方面进行综述。

    Abstract:

    Avian Tembusu virus (ATMUV) is a highly pathogenic virus infecting variety kinds of laying birds, resulting in appetite decreases and significant reduction in egg production. At the last stage, the affected animals may have neurological symptoms, such as muscle paralysis and dystaxia. In recent years, ATMUV spreads quickly in many provinces in China and has caused huge economic loss in poultry industry all over the world. Host innate immunity is the first line to defend against the infection of pathogens at early stages. Innate immune response is the nature ability of the organism to fight against the pathogenic microorganisms. On the other hand, adaptive immunity is the process by which the immune system produces specific antibodies by B cells and cellular immune response by T cells. Adaptive immunity is the key components of host immune system that contribute to the resistance to pathogens and are the basis of immunization. In this review, we will discuss host immune response to ATMUV infection and highlight the mechanisms by which ATMUV induces the host innate and adaptive immunity.

    参考文献
    [1] Su JL, Li S, Hu XD, Yu XL, Wang YY, Liu PP, Lu XS, Zhang GZ, Hu XY, Liu D, Li XX, Su WL, Lu H, Mok NS, Wang PY, Wang M, Tian KG, Gao GF. Duck egg-drop syndrome caused by BYD virus, a new Tembusu-related flavivirus. PLoS One, 2011, 6(3):18106.
    [2] Homonnay ZG, Kovacs EW, Bányai K, Albert M, Fehér E, Mató T, Tatár-Kis T, Palya V. Tembusu-like flavivirus (Perak virus) as the cause of neurological disease outbreaks in young Pekin ducks. Avian Pathology, 2014, 43(6):552-560.
    [3] Thontiravong A, Ninvilai P, Tunterak W, Nonthabenjawan N, Chaiyavong S, Angkabkingkaew K, Mungkundar C, Phuengpho W, Oraveerakul K, Amonsin A. Tembusu-related flavivirus in ducks, Thailand. Emerging Infectious Diseases, 2015, 21(12):2164-2167.
    [4] Tang Y, Diao Y, Gao X, Yu C, Chen L, Zhang D. Analysis of the complete genome of Tembusu virus, a flavivirus isolated from ducks in China. Transboundary and Emerging Diseases, 2012, 59(4):336-343.
    [5] Yan PX, Zhao YS, Zhang X, Xu DW, Dai XG, Teng QY, Yan LP, Zhou JW, Ji XW, Zhang SM, Liu GQ, Zhou YJ, Kawaoka Y, Tong GZ, Li ZJ. An infectious disease of ducks caused by a newly emerged Tembusu virus strain in mainland China. Virology, 2011, 417(1):1-8.
    [6] Cao ZZ, Zhang C, Liu YH, Ye WC, Han WJ, Ma GM, Zhang DD, Xu F, Gao XH, Tang Y, Shi SH, Wan CH, Zhang C, He B, Yang MJ, Lu XH, Huang Y, Diao YX, Ma XJ, Zhang DB. Tembusu virus in ducks, China. Emerging Infectious Diseases, 2011, 17(10):1873-1875.
    [7] He Y, Wang AQ, Chen S, Wu Z, Zhang JY, Wang MS, Jia RY, Zhu DK, Liu MF, Yang Q, Wu Y, Sun KF, Chen XY, Cheng AC. Differential immune-related gene expression in the spleens of duck Tembusu virus-infected goslings. Veterinary Microbiology, 2017, 212:39-47.
    [8] Liu M, Chen SY, Chen YH, Liu CG, Chen SL, Yin XC, Li G, Zhang Y. Adapted Tembusu-like virus in chickens and geese in China. Journal of Clinical Microbiology, 2012, 50(8):2807-2809.
    [9] Tang Y, Diao Y, Yu C, Gao X, Ju X, Xue C, Liu X, Ge P, Qu J, Zhang D. Characterization of a Tembusu virus isolated from naturally infected house sparrows (Passer domesticus) in Northern China. Transboundary and Emerging Diseases, 2013, 60(2):152-158.
    [10] Huang XM, Han KK, Zhao DM, Liu YZ, Zhang JF, Niu HM, Zhang KN, Zhu JN, Wu DM, Gao L, Li Y. Identification and molecular characterization of a novel flavivirus isolated from geese in China. Research in Veterinary Science, 2013, 94(3):774-780.
    [11] Platt GS, Way HJ, Bowen ETWB, Simpson DIH, Hill MN, Kamath S, Bendell PJE, Heathcote OHU. Arbovirus infections in Sarawak, October 1968-February 1970 Tembusu and Sindbis virus isolations from mosquitoes. Annals of Tropical Medicine & Parasitology, 1975, 69(1):65-71.
    [12] Kono Y, Tsukamoto K, Abd Hamid M, Darus A, Lian TC, Sam LS, Yok CN, Di KB, Lim KT, Yamaguchi S, Narita M. Encephalitis and retarded growth of chicks caused by Sitiawan virus, a new isolate belonging to the genus Flavivirus. The American Journal of Tropical Medicine and Hygiene, 2000, 63(1/2):94-101.
    [13] Tang Y, Gao X, Diao Y, Feng Q, Chen H, Liu X, Ge P, Yu C. Tembusu virus in human, China. Transboundary and Emerging Diseases, 2013, 60(3):193-196.
    [14] Liu PP, Lu H, Li S, Wu Y, Gao GF, Su JL. Duck egg drop syndrome virus:an emerging Tembusu-related flavivirus in China. Science China Life Sciences, 2013, 56(8):701-710.
    [15] Yun TN, Zhang DB, Ma XJ, Cao ZZ, Chen L, Ni Z, Ye WC, Yu B, Hua JG, Zhang Y, Zhang C. Complete genome sequence of a novel flavivirus, duck Tembusu virus, isolated from ducks and geese in China. Journal of Virology, 2012, 86(6):3406-3407.
    [16] Cao XT. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nature Reviews Immunology, 2016, 16(1):35-50.
    [17] Liu J, Qian C, Cao XT. Post-translational modification control of innate immunity. Immunity, 2016, 45(1):15-30.
    [18] Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell, 2010, 140(6):805-820.
    [19] Chen SL, Luo GF, Yang Z, Lin SC, Chen SY, Wang S, Goraya MU, Chi XJ, Zeng XC, Chen JL. Avian Tembusu virus infection effectively triggers host innate immune response through MDA5 and TLR3-dependent signaling pathways. Veterinary Research, 2016, 47(1):74.
    [20] Metz P, Reuter A, Bender S, Bartenschlager R. Interferon-stimulated genes and their role in controlling hepatitis C virus. Journal of Hepatology, 2013, 59(6):1331-1341.
    [21] Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity, 2012, 36(4):503-514.
    [22] Li S, Li XX, Zhang LJ, Wang YY, Yu XL, Tian KG, Su WL, Han B, Su JL. Duck tembusu virus exhibits neurovirulence in BALB/c mice. Virology Journal, 2013, 10(1):260.
    [23] Liu ZL, Ji YH, Huang XH, Fu YG, Wei JZ, Cai XP, Zhu QY. An adapted duck Tembusu virus induces systemic infection and mediates antibody-dependent disease severity in mice. Virus Research, 2013, 176(1/2):216-222.
    [24] Brownlie R, Allan B. Avian toll-like receptors. Cell and Tissue Research, 2011, 343(1):121-130.
    [25] Karpala AJ, Lowenthal JW, Bean AG. Activation of the TLR3 pathway regulates IFNβ production in chickens. Developmental and Comparative Immunology, 2008, 32(4):435-444.
    [26] Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors. Nature Immunology, 2010, 11(5):373-384.
    [27] Lester SN, Li K. Toll-like receptors in antiviral innate immunity. Journal of Molecular Biology, 2014, 426(6):1246-1264.
    [28] Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. International Immunology, 2009, 21(4):317-337.
    [29] Loo YM, Gale M, Jr. Immune signaling by RIG-I-like receptors. Immunity, 2011, 34(5):680-692.
    [30] Yu M, Levine SJ. Toll-like receptor 3, RIG-I-like receptors and the NLRP3 inflammasome:key modulators of innate immune responses to double-stranded RNA viruses. Cytokine & Growth Factor Reviews, 2011, 22(2):63-72.
    [31] Fu GH, Chen CT, Huang Y, Cheng LF, Fu QL, Wan CH, Shi SH, Chen HM, Liu W. Comparative analysis of transcriptional profiles of retinoic-acid-induced gene I-like receptors and interferons in seven tissues from ducks infected with avian Tembusu virus. Archives of Virology, 2016, 161(1):11-18.
    [32] Li N, Wang Y, Li R, Liu JY, Zhang JZ, Cai YM, Liu SD, Chai T, Wei LM. Immune responses of ducks infected with duck Tembusu virus. Frontiers in Microbiology, 2015, 6:425.
    [33] Tang Y, Yeh YT, Chen H, Yu CM, Gao XH, Diao YX. Comparison of four molecular assays for the detection of Tembusu virus. Avian Pathology, 2015, 44(5):379-385.
    [34] Li N, Hong TQ, Li R, Wang Y, Guo MJ, Cao ZX, Cai YM, Liu SD, Chai T, Wei LM. Cherry valley ducks mitochondrial antiviral-signaling protein-mediated signaling pathway and antiviral activity research. Frontiers in Immunology, 2016, 7:377.
    [35] Wang JY, Lei CQ, Ji YH, Zhou HB, Ren YJ, Peng QQ, Zeng Y, Jia Y, Ge JY, Zhong B, Li Y, Wei JZ, Shu HB, Zhu QY. Duck Tembusu virus nonstructural protein 1 antagonizes IFN-β signaling pathways by targeting VISA. Journal of Immunology, 2016, 197(12):4704-4713.
    [36] Akey DL, Brown WC, Konwerski JR, Ogata CM, Smith JL. Use of massively multiple merged data for low-resolution S-SAD phasing and refinement of flavivirus NS1. Acta Crystallographica Section D:Biological Crystallography, 2014, 70(10):2719-2729.
    [37] Chen S, Zhang W, Wu Z, Zhang JY, Wang MS, Jia YR, Zhu DK, Liu MF, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC. Goose Mx and OASL play vital roles in the antiviral effects of type I, Ⅱ, and Ⅲ interferon against newly emerging avian flavivirus. Frontiers in Immunology, 2017, 8:1006.
    [38] Ouyang J, Zhu XM, Chen YH, Wei HT, Chen QH, Chi XJ, Qi BM, Zhang LF, Zhao Y, Gao GF, Wang GS, Chen JL. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host & Microbe, 2014, 16(5):616-626.
    [39] Chen SL, Wang L, Chen JY, Zhang LL, Wang S, Goraya MU, Chi XJ, Na Y, Shao WH, Yang Z, Zeng XC, Chen SY, Chen JL. Avian interferon-inducible transmembrane protein family effectively restricts Avian Tembusu virus infection. Frontiers in Microbiology, 2017, 8:672.
    [40] Bailey CC, Zhong GC, Huang IC, Farzan M. IFITM-family proteins:the cell's first line of antiviral defense. Annual Review of Virology, 2014, 1:261-283.
    [41] Smith SE, Gibson MS, Wash RS, Ferrara F, Wright E, Temperton N, Kellam P, Fife M. Chicken interferon-inducible transmembrane protein 3 restricts influenza viruses and lyssaviruses in vitro. Journal of Virology, 2013, 87(23):12957-12966.
    [42] Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathogens, 2011, 7(1):1001258.
    [43] Yu JY, Li MH, Wilkins J, Ding SL, Swartz TH, Esposito AM, Zheng YM, Freed EO, Liang C, Chen BK, Liu SL. IFITM proteins restrict HIV-1 infection by antagonizing the envelope glycoprotein. Cell Reports, 2015, 13(1):145-156.
    [44] Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, Van Der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell, 2009, 139(7):1243-1254.
    [45] Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, Lloyd AR, Beard MR. The interferon-induced transmembrane proteins, IFITM1, IFITM2, and IFITM3 inhibit Hepatitis C virus entry. Journal of Biological Chemistry, 2015, 290(43):25946-25959.
    [46] Wang AQ, Sun LP, Wang MS, Jia RY, Zhu DK, Liu MF, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC, Chen S. Identification of IFITM1 and IFITM3 in goose:gene structure, expression patterns, and immune reponses against Tembusu virus infection. BioMed Research International, 2017, 2017:5149062.
    [47] Yang C, Liu F, Chen S, Wang MS, Jia RY, Zhu DK, Liu MF, Sun KF, Yang Q, Wu Y, Chen XY, Cheng AC. Identification of 2'-5'-oligoadenylate synthetase-like gene in goose:gene structure, expression patterns, and antiviral activity against newcastle disease virus. Journal of Interferon & Cytokine Research, 2016, 36(9):563-572.
    [48] Brzostek J, Gascoigne NRJ. Thymic origins of T cell receptor alloreactivity. Transplantation, 2017, 101(7):1535-1541.
    [49] Zhou H, Chen S, Wang MS, Jia RY, Zhu DK, Liu MF, Liu F, Yang Q, Wu Y, Sun KF, Chen XY, Jing B, Cheng AC. Antigen distribution of TMUV and GPV are coincident with the expression profiles of CD8α-positive cells and goose IFNγ. Scientific Reports, 2016, 6:25545.
    [50] Vratskikh O, Stiasny K, Zlatkovic J, Tsouchnikas G, Jarmer J, Karrer U, Roggendorf M, Roggendorf H, Allwinn R, Heinz FX. Dissection of antibody specificities induced by yellow fever vaccination. PLoS Pathogens, 2013, 9(6):e1003458.
    [51] Chen PC, Liu JX, Jiang YP, Zhao YH, Li QM, Wu L, He XJ, Chen HL. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus. Vaccine, 2014, 32(41):5271-5277.
    [52] Zou Z, Hu Y, Liu ZG, Zhong W, Cao HZ, Chen HC, Jin ML. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection. Veterinary Research, 2015, 46:42.
    [53] Liu LH, Dong HP, Chen H, Zhang J, Ling H, Li Z, Shi PY, Li HM. Flavivirus RNA cap methyltransferase:structure, function, and inhibition. Frontiers in Biology, 2010, 5(4):286-303.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

廖源,蔡彬祥,陈玉海,王松,陈吉龙. 禽坦布苏病毒诱导的宿主免疫应答[J]. 微生物学报, 2018, 58(8): 1372-1381

复制
相关视频

分享
文章指标
  • 点击次数:999
  • 下载次数: 1819
  • HTML阅读次数: 1493
  • 引用次数: 0
历史
  • 收稿日期:2018-02-07
  • 最后修改日期:2018-03-23
  • 在线发布日期: 2018-07-31
文章二维码