肌醇、唾液酸及岩藻糖代谢途径对嗜水气单胞菌致病性的影响
作者:
基金项目:

国家自然科学基金(31372454);江苏省农业科技自主创新项目[CX(17)2027];江苏省水产三新工程(D2017-3-1)


Effects of myo-inositol, sialic acid and L-fucose metabolic pathways on pathogenicity of Aeromonas hydrophila strain NJ-35
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的]调查肌醇、唾液酸以及岩藻糖代谢途径在嗜水气单胞菌感染宿主过程中对细菌致病性的影响。[方法]采用同源重组技术分别缺失嗜水气单胞菌NJ-35株的肌醇代谢相关基因iolC、唾液酸代谢相关基因nanA和岩藻糖代谢相关基因fucK,测定各缺失株对斑马鱼的半数致死量(LD50);将野生株与缺失株共感染鲫鱼,统计野生株和缺失株在不同组织中的细菌载量。[结果]各代谢相关基因的缺失均成功阻断了菌株对相应底物的降解能力。iolC的缺失导致菌株对斑马鱼的LD50升高近12倍,而nanAfucK的缺失对LD50没有明显影响。野生株与iolC缺失株共感染鲫鱼,肝脏、脾脏和肾脏中野生株的载量显著高于缺失株,表现出明显的生长优势;nanAfucK缺失株与野生株共感染鲫鱼,野生株和缺失株载量在各组织中均无明显差异。[结论]肌醇代谢途径在嗜水气单胞菌感染致病过程中发挥重要作用,而唾液酸和岩藻糖代谢途径对细菌无明显影响。

    Abstract:

    [Objective] This study aims to investigate the effect of inositol, sialic acid, and L-fucose metabolic pathways on pathogenicity in the process of Aeromonas hydrophila infection. [Methods] By homologous recombination technology, the genes associated with myo-inositol, sialic acid and L-fucose metabolism, iolC, fucK and nanA, were inactivated. Then fifty percent lethal doses (LD50) of the deletion mutants were determined in zebrafish and the bacterial loads in different tissues were assayed in crucian carp co-infected with the wild-type and its derivative mutant strains. [Results] The inactivation of all the three metabolic genes successfully blocked the ability of A. hydrophila to degrade the corresponding substrates. Deletion of iolC resulted in a nearly 12-fold increase in LD50 in zebrafish, whereas deletion of nanA and fucK had no significant effect on LD50. The bacterial loads of the wild strain were significantly higher than that of the iolC deletion strain in liver, spleen and kidney after co-infection, indicating an obvious competitive growth advantage of the wild strain. But for nanA and fucK mutant strains, after co-infection with the wild strain, there was no significant difference in bacterial loads of the wild-type and its derivative mutant strains in different tissues. [Conclusion] The inositol metabolic pathway plays an important role during A. hydrophila infection, while sialic acid and L-fucose metabolic pathways have no significant effect on the pathogenicity of this bacterium.

    参考文献
    [1] Tomás JM. The main Aeromonas pathogenic factors. ISRN Microbiology, 2012, 2012:Article ID 256261.
    [2] Pang MD, Jiang JW, Xie X, Wu YF, Dong YH, Kwok AHY, Zhang W, Yao HC, Lu CP, Leung FC, Liu YJ. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Scientific Reports, 2015, 5:9833.
    [3] Moravec AR, Siv AW, Hobby CR, Lindsay EN, Norbash LV, Shults DJ, Symes SJK, Giles DK. Exogenous polyunsaturated fatty acids impact membrane remodeling and affect virulence phenotypes among pathogenic Vibrio species. Applied and Environmental Microbiology, 2017, 83(22):e01415-17.
    [4] Pasqua M, Visaggio D, Lo Sciuto A, Genah S, Banin E, Visca P, Imperi F. The ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa. Journal of Bacteriology, 2017, 199(22):e00472-17.
    [5] Schoen C, Kischkies L, Elias J, Ampattu BJ. Metabolism and virulence in Neisseria meningitidis. Frontiers in Cellular and Infection Microbiology, 2014, 4:114.
    [6] Rohmer L, Hocquet D, Miller SI. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends in Microbiology, 2011, 19(7):341-348.
    [7] Zhang CY, Sun W, Tan MF, Dong MM, Liu WQ, Gao T, Li L, Xu ZF, Zhou R. The eukaryote-like serine/threonine kinase STK regulates the growth and metabolism of zoonotic Streptococcus suis. Frontiers in Cellular and Infection Microbiology, 2017, 7:66.
    [8] Pang MD, Xie X, Dong YH, Du HC, Wang NN, Lu CP, Liu YJ. Identification of novel virulence-related genes in Aeromonas hydrophila by screening transposon mutants in a Tetrahymena infection model. Veterinary Microbiology, 2017, 199:36-46.
    [9] Hu M, Pan ZH, Lu CP, Liu YJ. Biological characterization of epidemic Aeromonas hydrophila strains. Chinese Veterinary Science, 2013, 43(5):441-445. (in Chinese)胡萌, 潘子豪, 陆承平, 刘永杰. 嗜水气单胞菌流行菌株的生物学特性. 中国兽医科学, 2013, 43(5):441-445.
    [10] Abu Kwaik Y, Bumann D. Microbial quest for food in vivo:‘nutritional virulence’ as an emerging paradigm. Cellular Microbiology, 2013, 15(6):882-890.
    [11] Kohler PRA, Choong EL, Rossbach S. The RpiR-like repressor IolR regulates inositol catabolism in Sinorhizobium meliloti. Journal of Bacteriology, 2011, 193(19):5155-5163.
    [12] Manske C, Schell U, Hilbi H. Metabolism of myo-inositol by Legionella pneumophila promotes infection of amoebae and macrophages. Applied and Environmental Microbiology, 2016, 82(16):5000-5014.
    [13] Chen YL, Kauffman S, Reynolds TB. Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infection and Immunity, 2008, 76(6):2793-2801.
    [14] Wang Y, Liu TB, Delmas G, Park S, Perlin D, Xue CY. Two major inositol transporters and their role in cryptococcal virulence. Eukaryotic Cell, 2011, 10(5):618-628.
    [15] Xue CY, Liu TB, Chen L, Li WJ, Liu I, Kronstad JW, Seyfang A, Heitman J. Role of an expanded inositol transporter repertoire in Cryptococcus neoformans sexual reproduction and virulence. mBio, 2010, 1(1):e00084-10.
    [16] Almagro-Moreno S, Boyd EF. Insights into the evolution of sialic acid catabolism among bacteria. BMC Evolutionary Biology, 2009, 9(1):118.
    [17] Anba-Mondoloni J, Chaillou S, Zagorec M, Champomier-Vergès MC. Catabolism of N-acetylneuraminic acid, a fitness function of the food-borne lactic acid bacterium Lactobacillus sakei, involves two newly characterized proteins. Applied and Environmental Microbiology, 2013, 79(6):2012-2018.
    [18] Huang YL, Chassard C, Hausmann M, von Itzstein M, Hennet T. Sialic acid catabolism drives intestinal inflammation and microbial dysbiosis in mice. Nature Communications, 2015, 6:8141.
    [19] Sampson EM, Bobik TA. Microcompartments for B12-dependent 1,2-propanediol degradation provide protection from DNA and cellular damage by a reactive metabolic intermediate. Journal of Bacteriology, 2008, 190(8):2966-2971.
    [20] Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochemical Journal, 2004, 384(2):307-316.
    [21] Muraoka WT, Zhang QJ. Phenotypic and genotypic evidence for L-fucose utilization by Campylobacter jejuni. Journal of Bacteriology, 2011, 193(5):1065-1075.
    [22] Stahl M, Friis LM, Nothaft H, Liu X, Li JJ, Szymanski CM, Stintzi A. L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(17):7194-7199.
    [23] Puentes-Téllez PE, van Elsas JD. Sympatric metabolic diversification of experimentally evolved Escherichia coli in a complex environment. Antonie van Leeuwenhoek, 2014, 106(3):565-576.
    [24] Houot L, Watnick PI. A novel role for enzyme I of the Vibrio cholerae phosphoenolpyruvate phosphotransferase system in regulation of growth in a biofilm. Journal of Bacteriology, 2008, 190(1):311-320.
    相似文献
    引证文献
引用本文

李首纲,庞茂达,董雨豪,刘锦,杨媛媛,陆承平,刘永杰. 肌醇、唾液酸及岩藻糖代谢途径对嗜水气单胞菌致病性的影响[J]. 微生物学报, 2018, 58(8): 1465-1474

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2017-10-10
  • 最后修改日期:2017-12-18
  • 在线发布日期: 2018-07-31
文章二维码